Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube
Abstract
:1. Introduction
2. Material and Experimental Methods
2.1. Material and Objective Part
2.2. Principle and Equipment of HMGF Process
3. Effect of Pressure on Formability and Microstructure of 6063 Tube
3.1. Effect of Pressure on the Formability of 6063 Tube
3.2. Effect of Pressure on the Microstructure of 6063 Tube
4. Effect of Temperature on Formability and Microstructure of 6063 Tube
4.1. Effect of Temperature on the Formability of 6063 Tube
4.2. Effect of Temperature on the Microstructure of 6063 Tube
5. Optimum HMGF Process Parameters of 6063 Aluminum Alloy Tube
6. Conclusions
- The maximum relative section change rate increases with the increase in pressure. When the strain variable is small, the softening behavior of the material is the result of dynamic recovery and dynamic recrystallization. When the material is deformed at high temperature with large strain, the dynamic recrystallization is the main dynamic softening mechanism.
- Improvement of deformation temperature is conducive to the dynamic recrystallization of the tube, resulting in softening of the material and enhanced deformation uniformity between grains, so that the formability of the material is improved.
- The forming capacity of the forming parts is affected by the interaction between forming temperature and forming pressure. The forming temperature has a greater effect on the expansion result of the tube than the forming pressure. The optimum HMGF process parameters of 6063 aluminum alloy tubes are 475 °C with pressure of 2.5 MPa.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Aty, A.A.; Xu, Y.X.; Guo, X.Z.; Zhang, S.H.; Ma, Y.; Chen, D.Y. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review. J. Adv. Res. 2018, 10, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.C.; Machado, A.R.; Sales, W.F.; Barrozo, M.A.S.; Ezugwu, E.O. Machining of aluminum alloys: A review. Int. J. Adv. Manuf. Technol. 2016, 86, 3067–3080. [Google Scholar] [CrossRef]
- Dursun, T.; Soutis, C. Recent developments in advanced aircraft aluminum alloys. Mater. Des. 2014, 56, 862–871. [Google Scholar] [CrossRef]
- Zhu, L.J.; Liu, Z.X.; Zhang, Z.Q. Investigation on strengthening of 7075 aluminum alloy sheet in a new hot stamping process with pre-coo ling. Int. J. Adv. Manuf. Technol. 2019, 103, 4739–4746. [Google Scholar] [CrossRef]
- Mesbah, M.; Sarraf, M.; Dabbagh, A.; Nasiri-Tabrizi, B.; Paria, S.; Banihashemian, S.M.; Bushroa, A.R.; Faraji, G.; Tsuzuki, T.; Madaah Hosseini, H.R. Synergistic enhancement of photocatalytic antibacterial effects in high-strength aluminum/TiO2 nanoarchitectures. Ceram. Int. 2020, 49, 24267–24280. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.H.; Cheng, M.; Song, H.W. Formability improvement of austenitic stainless steel by pulsating hydroforming. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015, 229, 609–615. [Google Scholar] [CrossRef]
- Xia, L.L.; Xu, Y.; El-Aty, A.A.; Zhang, S.H.; Nielsen, K.B.; Li, J.M. Deformation characteristics in hydro-mechanical forming process of thin-walled hollow component with large deformation: Experimentation and finite element modeling. Int. J. Adv. Manuf. Technol. 2019, 104, 4705–4714. [Google Scholar] [CrossRef]
- Song, H.W.; Xie, W.L.; Zhang, S.H.; Jiang, W.H.; Lazarescu, L.; Banabic, D. Granular media filler assisted push bending method of thin-walled tubes with small bending radius. Int. J. Mech. Sci. 2021, 198, 106365. [Google Scholar] [CrossRef]
- Li, H.; Xu, Y.; Li, M.; Chen, D.Y.; Zhang, S.H.; Wei, G.; Yang, Q.C.; Wang, H.; Guo, X.Z. Research on magnetorheological elastomer forming process for complicated superalloy hollow part. Int. J. Adv. Manuf. Technol. 2021, 113, 231–246. [Google Scholar] [CrossRef]
- Mesbah, M.; Fattahi, A.; Bushroa, A.R.; Faraji, G.; Wong, K.Y.; Basirun, W.J.; Fallahpour, A.; Nasiri-Tabrizi, B. Experimental and Modelling Study of Ultra-Fine Grained ZK60 Magnesium Alloy with Simultaneously Improved Strength and Ductility Processed by Parallel Tubular Channel Angular Pressing. Met. Mater. Int. 2021, 27, 277–297. [Google Scholar] [CrossRef]
- Hosseini, A.; Rahmatabadi, D.; Hashemi, R.; Akbari, H. Experimental and numerical assessment of energy absorption capacity of thin-walled Al 5083 tube produced by PTCAP process. Trans. Nonferrous Met. Soc. China 2020, 30, 1238–1248. [Google Scholar] [CrossRef]
- Wang, X.G.; Li, Q.S.; Wu, R.R.; Zhang, X.Y.; Ma, L.Y. A review on superplastic formation behavior of Al alloys. Adv. Mater. Sci. Eng. 2018, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.Q.; Li, X.C.; Liu, G.J.; Xi, J.; Da, L.J.; Zhu, G.R. Investigation on a novel hot gas bulging with the clustering balls and evaluation of performance of 5083 alloy with a square pyramid part. J. Mater. Res. Technol. 2021, 14, 2185–2194. [Google Scholar] [CrossRef]
- Zhan, L.Q.; Wang, G.; Yang, J.L.; Kong, D.H.; Zhang, W.C.; Wang, G.F. Study on gas bulging forming and contradictive cooling bonding of AZ31/Al7475 bimetal composite tube. J. Mater. Eng. Perform. 2020, 29, 4652–4658. [Google Scholar] [CrossRef]
- Fan, X.B.; He, Z.B.; Lin, P.; Yuan, S.J. Microstructure, texture and hardness of Al-Cu-Li alloy sheet during hot gas forming with integrated heat treatment. Mater. Des. 2016, 94, 449–456. [Google Scholar] [CrossRef]
- Zheng, K.; Politis, D.J.; Wang, L.; Lin, J.G. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int. J. Lightweight Mater. Manuf. 2018, 1, 55–80. [Google Scholar] [CrossRef]
- Bach, M.; Degenkolb, L.; Reuther, F.; Psyk, V.; Demuth, R.; Werner, M. Conductive heating during press hardening by hot metal gas forming for curved complex part geometries. Metals 2020, 10, 1104. [Google Scholar] [CrossRef]
- Paul, A.; Strano, M. The influence of process variables on the gas forming and press hardening of steel tubes. J. Mater. Process. Technol. 2016, 228, 160–169. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, X. A microstructure study on an AZ31 magnesium alloy tube after hot metal gas forming process. J. Mater. Eng. Perform. 2007, 16, 354–359. [Google Scholar] [CrossRef]
- Michieletto, F.; Ghiotti, A.; Bruschi, S. Formability of AA6060 tubes in hot metal gas forming at high temperatures. Key Eng. Mater. 2015, 639, 49–56. [Google Scholar] [CrossRef]
- Rajaee, M.; Hosseinipour, S.J.; Aval, H.J. Tearing criterion and process window of hot metal gas forming for AA6063 cylindrical stepped tubes. Int. J. Adv. Manuf. Technol. 2019, 101, 2609–2620. [Google Scholar] [CrossRef]
- Anaraki, A.T.; Loh-Mousavi, M.; Wang, L.L. Experimental and numerical investigation of the influence of pulsating pressure on hot tube gas forming using oscillating heating. Int. J. Adv. Manuf. Technol. 2018, 97, 3839–3848. [Google Scholar] [CrossRef]
- Maeno, T.; Mori, K.I.; Unou, C. Improvement of die filling by prevention of temperature drop in gas forming of aluminium alloy tube using air filled into sealed tube and resistance heating. Procedia Eng. 2014, 81, 2237–2242. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, G.; Wang, K.; Liu, Z.Q.; Yuan, S.J. Loading path and microstructure study of Ti-3Al-2.5V tubular components within hot gas forming at 800 °C. Int. J. Adv. Manuf. Technol. 2016, 87, 1823–1833. [Google Scholar] [CrossRef]
- Liu, G.; Wu, Y.; Wang, D.J.; Yuan, S.J. Effect of feeding length on deforming behavior of Ti-3Al-2.5 V tubular components prepared by tube gas forming at elevated temperature. Int. J. Adv. Manuf. Technol. 2015, 81, 1809–1816. [Google Scholar] [CrossRef]
- He, Z.B.; Fan, X.B.; Shao, F.; Zheng, K.L.; Wang, Z.B.; Yuan, S.J. Formability and microstructure of AA6061 Al alloy tube for hot metal gas forming at elevated temperature. Trans. Nonferrous Met. Soc. China 2012, 22, s364–s369. [Google Scholar] [CrossRef]
- Hu, Z.Q.; Li, X.C.; Xi, J.; Da, L.J. Microstructure evolution, texture and strengthening mechanism of Al–Mg alloy with a square pyramid part during hot gas bulging with clustering balls. J. Alloys Compd. 2022, 911, 165055. [Google Scholar] [CrossRef]
- Engler, O. On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater. 1998, 46, 1555–1568. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Son, H.T.; Woo, K.D.; Lee, K.J. Texture and mechanical properties of Al-0.5Mg-1.0Si-0.5Cu alloy sheets manufactured via a cross rolling method. Met. Mater. Int. 2012, 18, 295–301. [Google Scholar] [CrossRef]
- Li, X.Y.; Xia, W.J.; Chen, J.H.; Yan, H.G.; Li, Z.Z.; Su, B.; Song, M. Dynamic recrystallization, texture and mechanical properties of high Mg content Al-Mg alloy deformed by high strain rate rolling. Trans. Nonferrous Met. Soc. China 2021, 31, 2885–2889. [Google Scholar] [CrossRef]
- Jiang, J.; Britton, T.B.; Wilkinson, A.J. Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater. 2013, 61, 7227–7239. [Google Scholar] [CrossRef]
- Hutchinson, B. Deformation microstructures and textures in steels. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 1999, 357, 1471–1485. [Google Scholar] [CrossRef]
- Ling, K.; Mo, W.F.; Deng, P.; Chen, J.W.; Luo, B.H.; Bai, Z.H. Hot deformation behavior and dynamic softening mechanisms of hot-extruded Al-Cu-Mg-Ag-Mn-Zr-Ti alloy. Mater. Today Commun. 2023, 34, 105300. [Google Scholar] [CrossRef]
Mg | Si | Cr | Mn | Fe | Cu | Zn | Al |
---|---|---|---|---|---|---|---|
0.58 | 0.46 | <0.03 | 0.06 | 0.19 | 0.03 | <0.03 | Balance |
DTube (mm) | D0 (mm) | D1 (mm) | D2 (mm) | L (mm) | L1 (mm) | L2 (mm) | R1 (mm) | R2 (mm) |
---|---|---|---|---|---|---|---|---|
41 | 45 | 46.45 | 64 | 200 | 140 | 50 | 15 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Lv, X.-W.; Wang, Y.; Zhang, S.-H.; Xie, W.-L.; Xia, L.-L.; Chen, S.-F. Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube. Materials 2023, 16, 1152. https://doi.org/10.3390/ma16031152
Xu Y, Lv X-W, Wang Y, Zhang S-H, Xie W-L, Xia L-L, Chen S-F. Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube. Materials. 2023; 16(3):1152. https://doi.org/10.3390/ma16031152
Chicago/Turabian StyleXu, Yong, Xiu-Wen Lv, Yun Wang, Shi-Hong Zhang, Wen-Long Xie, Liang-Liang Xia, and Shuai-Feng Chen. 2023. "Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube" Materials 16, no. 3: 1152. https://doi.org/10.3390/ma16031152
APA StyleXu, Y., Lv, X. -W., Wang, Y., Zhang, S. -H., Xie, W. -L., Xia, L. -L., & Chen, S. -F. (2023). Effect of Hot Metal Gas Forming Process on Formability and Microstructure of 6063 Aluminum Alloy Double Wave Tube. Materials, 16(3), 1152. https://doi.org/10.3390/ma16031152