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Abstract: In this study, ZnTe crystal was applied to provide precise thermal sensing for cryogenic
temperatures. Multiple techniques, namely Raman and photoluminescence spectroscopies, were
used to broaden the operating temperature range and improve the reliability of the proposed ther-
mometers. Raman-based temperature sensing could be applied in the range of 20–100 K, while
luminescence-based thermometry could be utilized in a narrower range of 20–70 K. However, the
latter strategy provides better relative thermal sensitivity and temperature resolution. The best
thermal performances based on a single temperature-dependent parameter attain Sr = 3.82% K−1

and ∆T = 0.12 K at T = 50 K. The synergy between multiple linear regression and multiparametric
thermal sensing demonstrated for Raman-based thermometry results in a ten-fold improvement of Sr

and a two-fold enhancement of ∆T. All studies performed testify that the ZnTe crystal is a promising
multimode contactless optical sensor for cryogenic thermometry.

Keywords: ZnTe; optical thermometry; photoluminescence; Raman spectrum; cryogenic temperature;
multimode sensing

1. Introduction

Accurate temperature measurements are crucial for the majority of human activi-
ties, including science, medicine, agriculture, industry, and aerospace [1–5]. Traditional
thermometers, such as liquid-filled and bimetallic thermometers, thermocouples, and
thermo-resistance, generally require physical contact and thermal transmission, severely
restricting their applications in moving objects, hazardous and inaccessible locations, or mi-
cro/nanoscale [6–8]. To overcome these limitations, remote temperature sensing based on
monitoring the changes in the optical properties of samples was proposed [9–13]. Optical
thermometry can be realized via the following methods: optical interferometry, near-field
optical scanning microscopy, Raman scattering, and luminescence spectroscopy [7,14,15].

Optical interferometry could be used for high-resolution thermal sensing. The prin-
ciple of optical interferometry is as follows: it monitors changes in the refractive index
of a fluid triggered by temperature. The technique utilizes an even illumination source
(Köhler illumination) and a wavefront analyzer to provide temperature mapping [9,16].
Baffou et al. demonstrated optical interferometry for temperature sensing by measuring
the heat dissipated by a gold microwire, as well as bubble formation from plasmonic nanos-
tructures in water [17,18]. Limitations of optical thermometry are the study of samples
immersed in fluids and the need for a model to define the refractive index of the fluid [9].

Raman and luminescence thermometers provide contactless temperature sensing with
suitable spatial resolution and 3D mapping. Raman spectroscopy can be applied to a
wide range of samples and experimental conditions, but it requires a long integration
time to record the optical signal, which is usually weak. The main advantages of this
method are the rather simple sample preparation, the sufficiency of a small amount of
material, and the applicability in almost all environments, even during chemical reactions
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or under extreme pressure and temperature conditions. Raman spectroscopy works over a
wide temperature range but is limited at high temperatures due to black-body radiation
(above ~1000 K). In principle, each material is potentially a thermal sensor in terms of
Raman light scattering, and therefore, this method can be applied in many different situa-
tions. However, limitations arise because of the need for sample transparency and the weak
intensity of Raman signals. Luminescence thermometry attracts more attention because
it combines high relative thermal sensitivity and spatial resolution with short acquisition
times [19–21]. Temperature-induced changes in photoluminescence parameters that in-
clude intensity (or intensity ratio of two bands), lifetime, bandwidth, spectral position, and
polarization can be used for luminescence thermal sensing [22–27]. The vast majority of
known luminescence thermometers utilize a single parameter to provide temperature sens-
ing. However, it has been reported that the use of a combination of distinct thermometric
parameters could improve the reliability of thermometers [28–32]. In addition to reliability,
this multiparametric approach could significantly improve the relative thermal sensitivity
and temperature resolution of the sensor using a multiple linear regression-based strategy
proposed by Carlos et al. [33,34]. Another strategy to use several temperature-dependent lumi-
nescence parameters for the enhancement of thermometric characteristics has been reported
by Khodasevich et al. [35]. Authors developed a multivariate model of temperature calibration
by the spectra of green upconversion fluorescence of GeO2–Na2O–Yb2O3–MgO–La2O3–Er2O3
glass ceramics based on the principal component analysis, cluster analysis, and the interval
projection to latent structures.

Herein, we studied ZnTe crystal as a multimode optical thermal sensor in the cryogenic
temperature range. Raman and photoluminescence spectroscopies have been successfully
applied for thermometry using various temperature-dependent parameters, including the
ratio between Raman modes, the luminescence intensity ratio, the spectral position, and
the bandwidth of the emission line. The advantage of multiparametric thermometry was
realized through the application of multiple linear regression, which led to significant
enhancement of thermometric performances.

2. Experimental

The sample under study was a thick layer of zinc telluride film 3 × 3 mm in size and
approximately 2 mm in height, grown by the MOCVD technique on a GaAs substrate.
Dimethylzinc (DMZn) and diethyltellurium (DETe) were used as precursors. The ZnTe film
was grown in a cubic phase with a zinc blend structure (sphalerite). The lattice constant
a = 0.61 nm [36,37]. The crystalline cell is face-centered, and the primitive cell contains
two atoms.

Raman spectroscopy was performed using a T64000 research-grade spectrometer
(Horiba Scientific, Kyoto, Japan) with a 532 nm solid-state laser as an excitation source and
in a backscattering geometry (scattering angle of 180◦). Signal detection was performed
via Peltier-cooled CCD matrix Synapse (Horiba Scientific, Kyoto, Japan). Measurements
were carried out in a single spectrometer mode with 1800 gr/mm diffraction grating. Laser
radiation was focused onto the sample surface using a 50× microobjective (NA 0.6). Raman
signals of the 1LO, 2LO, and 3LO modes were recorded using different acquisition times
(namely 2, 10, and 20 s) due to a significant difference in their intensities. To improve
the signal-to-noise ratio, 8 repetitions were carried out for each measurement. The data
presented take into account different acquisition times to provide a fair calculation of the
intensity ratios.

Emission spectra were obtained using the same spectrometer with a 514 nm diode laser
as an excitation source (power density 350 kW/cm2). Laser radiation was focused onto the
sample surface using a 50× microobjective (NA 0.6). The chosen power density was weak
enough not to disturb the sample temperature during irradiation. The typical acquisition
time for emission measurements varies from 1 to 3 s, depending on the sample temperature.
To improve the signal-to-noise ratio, 4 repetitions were carried out for each measurement.
All other experimental parameters used were the same as in Raman measurements. The
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data provided were normalized to an acquisition time. The sample was placed in a helium
cryostat (CryoIndustries, Manchester, NH, USA) to carry out temperature measurements.
The operating temperature regime was 20–100 K, and the temperature stability was 0.05 K.
During thermal studies, a 5 min gap was used to stabilize the temperature of the sample
prior to each measurement.

3. Results and Discussion

Raman spectra of the ZnTe sample measured within the spectral range of 180–650 cm−1

at different temperatures (20–100 K) are shown in Figure 1. In accordance with the group
theory, in the common case, six phonon modes occur in ZnTe sphalerite crystal, three of
them are acoustic, and three are optical, three-fold degenerate. Thus, one should observe
only one optical phonon mode in the Raman spectrum as well as its overtones. Further-
more, crystalline tellurium, which can aggregate in the grown ZnTe layers, contributes to
vibrational spectra in the low-frequency range (below 150 cm−1) [38,39]. The observed
ZnTe vibrational lines centered at 208.9, 418.8, and 627.9 cm−1 (at T = 20 K) are assigned to
1LO, 2LO, and 3LO modes, respectively. No crystalline tellurium modes were observed in
the studied spectral region. It can be seen that temperature increase leads to the broadening
and red shift of all Raman bands. In addition, temperature growth results in an increase in
Raman intensity.
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Figure 1. Raman spectra of the ZnTe film measured in the temperature range of 20–100 K.

Careful analysis of thermally induced change of ZnTe Raman spectra shows that
ratiometric technique between different observed vibrational lines can provide contactless
temperature sensing. For example, the intensity ratio between 1LO and 2LO intensities
(R12) can be utilized as a temperature-dependent parameter for optical thermometry. The
experimental values of R12 as a function of temperature are presented in Figure 2a. The
observed R12 temperature dependence can be accurately fitted by a pseudo-linear function
with suitable quality Adj. R2 = 0.98, which facilitates defining temperature from the
calculated ratio. Another temperature-sensitive parameter proposed is the intensity ratio
between 3LO and 2LO lines—R32. Similar to the former case, R32 experimental values
were approximated with a linear function with slightly worse quality. Both ratiometric
approaches prove the possibility of using Raman spectra of ZnTe for optical thermal sensing.
However, R12 provides thermometry within the temperature range of 20–100 K, whereas
R32 allows thermal sensing in the region of 20–95 K. This fact could be explained by an
indistinguishable intensity of the 3LO mode at 100 K.
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Figure 2. Temperature evolution of (a) R12 and (b) R32.

In addition to Raman spectroscopy, luminescence measurements are widely known
as one of the most perspective methods to provide contactless optical thermometry. Zinc
telluride is a direct band semiconductor with a 2.26 eV band gap [40,41]. The valence
band consists of two sub-bands with different effective masses; however, the maxima corre-
sponding to the light-hole and heavy-hole excitons cannot be observed in low-temperature
photoluminescence spectra of bulk and thick ZnTe films. Figure 3 displays ZnTe emission
spectra upon 514 nm excitation measured at 20 K. We focused on ZnTe exciton luminescence
bands as these lines undergo the largest thermally induced change. All observed emission
bands are ascribed to the corresponding transitions (Table 1).
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Table 1. Assignment of ZnTe exciton luminescence bands, T = 20 K [42–47].

Emission Assignment Symbol Energy Position, eV

Free exciton FE 2.3796
Exciton bound to neutral donor D0

X 2.3746
Exciton bound to neutral acceptor A0

X 2.3698
Exciton bound to charged acceptor A1

X 2.3567
First phonon replica of free exciton FE-1LO 2.3535

First phonon replica of exciton bound to
neutral acceptor A0

X-1LO 2.3439

First phonon replica of exciton bound to
charged acceptor A1

X-1LO 2.3307

Second phonon replica of free exciton FE-1LO 2.3273

Further, emission spectra of the ZnTe sample were measured at different temperatures
(Figure 4a). One can see significant thermal quenching of both FE-1LO and D0

X bands
accompanied by a red shift of the latter one, along with a temperature increase. The
spectroscopic parameters of emission bands, including intensity and line position, were
obtained from the deconvolution procedure, which was performed for each temperature.
The best fit was obtained by using the Voight line shape for both bands. The luminescence
intensity ratio between the FE-1LO and D0

X transitions was proposed as a temperature-
dependent parameter for optical thermometry. As can be seen from Figure 4b, LIR could
provide temperature sensing within the range of 20–70 K. The experimental data were
successfully fitted with an exponential function: LIR = IFE−1LO

ID0
X

= A + B·eR0T , where B,

C, and R0 are temperature-independent constants. The approximation used should be
considered a phenomenological function.

In addition to LIR, the spectral line position and bandwidth of the D0
X band could be

sensitive parameters in the same temperature range (Figure 4c,d). One can see that the
spectral line displays monotonic behavior with temperature, which results in a gradual
red shift along with temperature growth. Temperature increase led to the broadening of
luminescence bands, and the bandwidth of the D0

X line was approximated using the same
exponential function as LIR.

To date, several models have been developed that describe the temperature depen-
dence of the luminescence bandwidth for transition metals and lanthanides [48]. D0

X line
monitored here is assigned to exciton band and could have significantly different tem-
perature behavior. Rudin et al. reported theoretical model for temperature behavior of
exciton band in semiconductor, but it is too complex to be used for practical application [49].
Therefore, the obtained experimental data were fitted with a simple phenomenological
exponential equation.

According to the observed data, the temperature dependence of free exciton first
and second phonon replica intensity ratio linearly increases within the range 20–60 K
(Figure 5). Similar data were acquired for gallium nitride, cadmium sulfide, and cadmium
selenide [50,51]. In the case of free exciton radiative annihilation, only phonons with the
wave vector close to the zero point participate in an interaction with excitons. However,
considering the second phonon replica, the sum of two phonons wave vectors must be
close to zero in order to interact with excitons. Along with the temperature increase, a
bigger number of phonons in the first replica participate in the radiative annihilation, while
the number of phonons corresponding to the second replica remains unchanged. Therefore,
an equation could be derived I(1LO)

I(2LO)
= CT, where T is temperature, and C is a coefficient,

characterizing the grown layers quality. The obtained value C = 0.38 makes one conclude
that synthesized ZnTe samples have a rather suitable quality [51].
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Thermometric performances of the studied ZnTe thermometer were assessed in terms
of relative thermal sensitivity and temperature resolution. Relative thermal sensitivity,
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Sr, was introduced to provide a fair comparison between various types of thermometers
irrespective of their nature (e.g., mechanical, electrical, optical). Sr could be obtained using
the following equation: Sr = 1

Λ

∣∣∣ ∂Λ
∂T

∣∣∣, where Λ is the monitored temperature-dependent
parameter. Thermal sensitivity depends on temperature, so Figure 6 shows Sr values calculated
for different proposed sensing parameters as a function of temperature. It can be seen that
relative thermal sensitivity increases with temperature growth, except for thermometry, based
on the position of the spectral line. The best Sr value of 6.0% K−1@70 K was achieved using
LIR as a temperature-dependent parameter.
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The temperature resolution, ∆T, which defines the accuracy of the thermometer, can
be found via several methods [52]. Temperature resolution for ratiometric approaches was
calculated from the expression: ∆T = 1

Sr
δR
R , where δR is the uncertainty in the R value

that may be defined as δR = δ
(
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)
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[53,54].

Finally, ∆T = 1
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√(
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)2
+
(

δI2
I2

)2
, where the δI1 and δI2 are obtained from the integrated

intensity of the noise.
Recently, Carlos et al. clearly demonstrated that multiparametric thermal sensing

could improve not only the reliability of luminescence thermometers but also significantly
enhance the relative thermal sensitivity and temperature resolution by using multiple
linear regression (MLR) [33]. The main idea is as follows: if a thermometer has several
thermometric parameters that vary linearly with temperature, i.e., ∆1, ∆2, . . . , ∆n, then
the temperature can be expressed as a function of each ∆, i.e., T = f (∆1, ∆2, . . . , ∆n):
T = β0 + ∑n

i=1 βi∆i + ε, where β0 is the intercept, βi (i = 1, . . . , n) is the slope of each
thermometric parameter ∆i (explanatory variable i), and ε is the residual [33,55]. Thus,

thermometric performances could be rewritten as follows: Sr =

√
∑n

i=1

(
1
∆i

∣∣∣ ∂∆i
∂T

∣∣∣)2
=√

∑n
i=1

(
∆i

∣∣∣ ∂T
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=
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−2 and ∆T = 1
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√
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(
δ∆i
∆i

)2
, where δ∆i/∆i is the

relative uncertainty in each thermometric parameter.
As a proof of concept, the MLR approach was applied to experimental data obtained

from Raman measurements with two distinct ∆i parameters previously defined as R12 and
R32. Table 2 lists relative thermal sensitivity and temperature resolution based on different
thermometry strategies, which were obtained using standard and MLR approaches. The
synergy between MLR and multiparametric thermal sensing results in about a ten-fold
improvement of Sr and a two-fold improvement of ∆T. Noteworthy, all suggested thermom-
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etry approaches provide sub-degree temperature sensing at 50 K. The best temperature
resolution attained with MLR exceeds 0.1 K.

Table 2. Thermometric performances of ZnTe crystal using different sensing parameters (T = 50 K).

Material Sensing Parameter Sr (% K) ∆T (K)

ZnTe R12 (Raman) 1.04 0.16
R32 (Raman) 1.35 0.79

LIR (luminescence) 3.82 0.12
Position (luminescence) 2.12 –
FWHM (luminescence) 1.45 –

MLR (Raman) 15.44 0.07

4. Conclusions

In summary, we successfully demonstrate the ZnTe sample as a multimode optical
thermal sensor for cryogenic temperatures. Contactless thermometry was performed using
Raman and luminescence spectroscopy. Two different intensity ratios between optical vi-
bration modes were utilized for sensing in a range of 20–100 K. Luminescence thermometry
also provides a multiparametric approach using LIR between FE-1LO and D0

X transitions,
spectral line position, and bandwidth of D0

X band. The thermometric performances of the
ZnTe sample were assessed via relative thermal sensitivity and temperature resolution,
showing suitable prospects for use in real applications. The best sensitivity based on a single
temperature-dependent parameter attains 3.82% K−1@50 K, while temperature resolution
was found to be sub-degree for all proposed parameters. The synergy between multiple lin-
ear regression and multiparametric thermal sensing allows the thermometric performances
of ZnTe temperature sensors to be significantly enhanced. Ten-fold improvement of Sr and
two-fold enhancement of ∆T make the thermometric performances unprecedentedly high
for contactless thermometers using Raman spectroscopy.
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