Influence of Citric Acid on the Fundamental Properties of CO2 Cured Magnesium Oxysulfate Paste
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Setting Time
2.3.2. Slump Test
2.3.3. CO2 Curing
2.3.4. Mechanical Strength
2.3.5. Erosion Resistance
2.3.6. Drying Shrinkage Measurement
2.3.7. Scanning Electron Microscope Energy Spectrum
2.3.8. Measurement of Pore Size Distribution
2.3.9. Measurement of Density
3. Results and Discussions
3.1. Setting Time
3.2. Slump Flow Test
3.3. Mechanical Properties
3.4. Drying Shrinkage Rate
3.5. Water Resistance
3.6. Freeze-Thaw Resistance
3.7. Sulfate Erosion
3.8. Scanning Electron Microscope
3.9. Porosity Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nemati, K.M.; Uhlmeyer, J.S. Accelerated construction of urban intersections with Portland Cement Concrete Pavement (PCCP). Case Stud. Constr. Mater. 2021, 14, e00499. [Google Scholar] [CrossRef]
- Mo, L.; Panesar, D. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cem. Concr. Res. 2012, 42, 769–777. [Google Scholar]
- Liu, M.Y.; He, Z.; Cai, X.H. Properties of alkali-free liquid cement accelerator and its accelerating mechanism. New Build. Mater. 2012, 39, 36–40.1. [Google Scholar]
- Chen, X.; Zhang, T.; Bi, W.; Cheeseman, C. Effect of tartaric acid and phosphoric acid on the water resistance of magnesium oxychloride (MOC) cement. Constr. Build. Mater. 2019, 213, 528–536. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Zhou, Y.; Cheeseman, C.; Bi, W.; Zhang, T. Improved low-carbon magnesium oxysulfate cement pastes containing boric acid and citric acid. Cem. Concr. Compos. 2022, 134, 104813. [Google Scholar]
- Du, H.; Li, J.; Ni, W.; Hou, C.; Liu, W. The hydration mechanism of magnesium oxysulfate cement prepared by magnesium desulfurization byproducts. J. Mater. Res. Technol. 2022, 17, 1211–1220. [Google Scholar] [CrossRef]
- Jia, Z.Z.; Fang, L.; Guo, Y.X.; Kong, X.G.; Lei, X.D. Synergistic immobilization of chloride ions by metakaolin and calcined hydrotalcite in basic magnesium sulfate cement. J. Build. Eng. 2022, 53, 104524. [Google Scholar] [CrossRef]
- Guo, B.; Tan, Y.; Wang, L.; Chen, L.; Wu, Z.; Sasaki, K.; Mechtcherine, V.; Tsang, D. High-efficiency and low-carbon remediation of zinc contaminated sludge by magnesium oxysulfate cement. J. Hazard. Mater. 2021, 408, 124486. [Google Scholar]
- Wang, R.; Qin, L.; Gao, X. Mechanical strength and water resistance of magnesium oxysulfate cement based lightweight materials. Cem. Concr. Compos. 2020, 109, 103554. [Google Scholar]
- Wu, C.; Chen, W.; Zhang, H.; Yu, H.; Zhang, W.; Jiang, N.; Liu, L. The hydration mechanism and performance of Modified magnesium oxysulfate cement by tartaric acid. Constr. Build. Mater. 2017, 144, 516–524. [Google Scholar] [CrossRef]
- Pang, X.; Liu, H.; Chen, L.; Yuan, Y.; Liu, X.; Pang, X.; Liu, Y. Isothermal calorimetry study of the effect of citric acid on the hydration kinetics of magnesium oxysulfate cement. Constr. Build. Mater. 2023, 365, 130041. [Google Scholar] [CrossRef]
- Wang, N.; Yu, H.; Bi, W.; Tan, Y.; Zhang, N.; Wu, C.; Ma, H.; Shi, H. Effects of sodium citrate and citric acid on the properties of magnesium oxysulfate cement. Constr. Build. Mater. 2018, 169, 697–704. [Google Scholar] [CrossRef]
- Jin, K.; Xu, X.; Chen, X.; Bi, W.; Li, M. Effect of Granite Powder on Compressive Strength and Water Resistance of Magnesium Oxysulfate Cement. J. Build. Eng. 2022, 25, 767–772+780. [Google Scholar]
- Li, M.; Gu, K.; Chen, B. Effects of flue gas desulfurization gypsum incorporation and curing temperatures on magnesium oxysulfate cement. Constr. Build. Mater. 2022, 349, 128718. [Google Scholar]
- Gu, K.; Chen, B.; Cui, Q. Experimental research on properties of magnesium oxysulfate cement during high temperature exposure. Compos. Part B-Eng. 2022, 244, 110168. [Google Scholar]
- Guan, Y.; Hu, Z.; Zhang, Z.; Chang, J.; Bi, W.; Cheeseman, C.; Zhang, T. Effect of hydromagnesite addition on the properties and water resistance of magnesium oxysulfate (MOS) cement. Cem. Concr. Res. 2021, 143, 106387. [Google Scholar] [CrossRef]
- Xu, W.; Song, Z.; Guo, M.; Jiang, L.; Chu, H. Improvement in water resistance of magnesium oxychloride cement via incorporation of dredged sediment. J. Clean. Prod. 2022, 356, 131830. [Google Scholar]
- He, P.; Poon, C.; Tsang, D. Comparison of glass powder and pulverized fuel ash for improving the water resistance of magnesium oxychloride cement. Cem. Concr. Compos. 2018, 86, 98–109. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Gao, X.; Zhang, J. Effect of pulverized fuel ash, ground granulated blast-furnace slag and CO2 curing on performance of magnesium oxysulfate cement. Constr. Build. Mater. 2020, 230, 116990. [Google Scholar] [CrossRef]
- Xian, X.; Zhang, D.; Lin, H.; Shao, Y. Ambient pressure carbonation curing of reinforced concrete for CO2 utilization and corrosion resistance. J. CO2 Util. 2022, 56, 101861. [Google Scholar] [CrossRef]
- Li, Q.; Su, A.; Gao, X. Preparation of durable magnesium oxysulfate cement with the incorporation of mineral admixtures and sequestration of carbon dioxide. Sci. Total. Environ. 2022, 809, 152127. [Google Scholar] [CrossRef]
- Ba, M.; Xue, T.; He, Z.; Wang, H.; Liu, J. Carbonation of magnesium oxysulfate cement and its influence on mechanical performance. Constr. Build. Mater. 2019, 223, 1030–1037. [Google Scholar] [CrossRef]
- Cao, H.; Liang, Z.; Peng, X.; Cai, X.; Wang, K.; Wang, H.; Lyu, Z. Research of Carbon Dioxide Curing on the Properties of Reactive Powder Concrete with Assembly Unit of Sulphoaluminate Cement and Ordinary Portland Cement. Coatings 2022, 12, 209. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, S.; Song, L.; Qu, Z.; Wang, H. Influence of Carbon Dioxide Curing on the Corrosion Resistance of Reinforced Cement Mortar under the External Erosion of NaCl Freeze–Thaw Cycle. Appl. Sci. 2022, 12, 5061. [Google Scholar] [CrossRef]
- Mahoutian, M.; Ghouleh, Z.; Shao, Y. Carbon dioxide activated ladle slag binder. Constr. Build. Mater. 2014, 66, 214–221. [Google Scholar] [CrossRef]
- GB/T175-2007; Common Portland Cement. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007.
- Jia, Y.; Zou, Y.X.; Jiang, Y.T.; Zou, X.M.; Li, Y.; Zhou, Y.X.; Zhang, T.T. Effect of a Ca-rich environment on the reaction process of the MgO-activated SiO2 system. Cem. Concr. Compos. 2023, 136, 104855. [Google Scholar] [CrossRef]
- GB/T8077-2000; Methods for Testing Uniformity of Concrete Admixture. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2000.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2009.
- Gu, K.; Maierdan, Y.; Chen, B. Effects of ethylenediamine tetra-acetic acid (EDTA) and its disodium salt derivative (EDTA-Na) on the characteristics of magnesium oxysulfate (MOS) cement. Compos. Part B Eng. 2022, 232, 109654. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, B.; Wu, Z.; Han, J.; Zhang, T.; Vandeperre, L.; Cheeseman, C. Role of sodium hexametaphosphate in MgO/SiO2 cement pastes. Cem. Concr. Res. 2016, 89, 63–71. [Google Scholar] [CrossRef]
- Guo, T.; Wang, H.; Yang, H.; Cai, X.; Ma, Q.; Yang, S. The mechanical properties of magnesium oxysulfate enhanced with 517 phase magnesium oxysulfate whiskers. Constr. Build. Mater. 2017, 150, 844–850. [Google Scholar] [CrossRef]
- Gu, K.; Chen, B.; Yu, H.; Zhang, N.; Bi, W.; Guan, Y. Characterization of magnesium-calcium oxysulfate cement prepared by replacing MgSO4 in magnesium oxysulfate cement with untreated desulfurization gypsum. Cem. Concr. Compos. 2021, 121, 104091. [Google Scholar] [CrossRef]
- Kuenzel, C.; Zhang, F.; Ferrándiz-Mas, V.; Cheeseman, C.R.; Gartner, E.M. The mechanism of hydration of MgO-hydromagnesite blends. Cem. Concr. Res. 2018, 103, 123–129. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Wu, C.Y. Influence of impurity boron on water resistance of basic magnesium sulfate cement. J. Phys. Conf. Ser. 2022, 2321, 012004. [Google Scholar] [CrossRef]
- Huang, G.; Wang, H.; Shi, F. Coupling Effect of Salt Freeze-Thaw Cycles and Carbonation on the Mechanical Performance of Quick Hardening Sulphoaluminate Cement-Based Reactive Powder Concrete with Basalt Fibers. Coatings 2021, 11, 1142. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, F.Y.; Deng, D.H.; Xie, Y.; Long, G.; Tang, X. Physical sulfate attack on concrete lining—A field case analysis. Case Stud. Constr. Mater. 2017, 6, 206–212. [Google Scholar] [CrossRef]
- Wu, C.Y.; Zhang, H.F.; Yu, H.F. Preparation and Properties of Modified Magnesium Oxysulfate Cement Derived from Waste Sulfuric Acid. Adv. Cem. Res. 2015, 28, 1–10. [Google Scholar]
- Wang, H.; Gao, X.; Liu, J.; Ren, M.; Lu, A. Multi-functional properties of carbon nanofiber reinforced reactive powder concrete. Constr. Build. Mater. 2018, 187, 699–707. [Google Scholar] [CrossRef]
- Wang, H.; Gao, X.; Liu, J. Coupling effect of salt freeze-thaw cycles and cyclic loading on performance degradation of carbon nanofiber mortar. Cold Reg. Sci. Technol. 2018, 154, 95–102. [Google Scholar] [CrossRef]
Speciemens | MgO | MgSO4·7H2O | Water | Citric Acid |
---|---|---|---|---|
MOS-0 | 422 | 178 | 143.5 | 0 |
MOS-0.1 | 422 | 178 | 143.5 | 0.6 |
MOS-0.2 | 422 | 178 | 143.5 | 1.2 |
MOS-0.3 | 422 | 178 | 143.5 | 1.8 |
MOS-0.4 | 422 | 178 | 143.5 | 2.4 |
Elements | Mg | O | S | C |
---|---|---|---|---|
0% citric acid | 39.09 | 9.82 | 50.61 | 0.48 |
0.2% citric acid | 57.1 | 4.15 | 38.39 | 0.36 |
0.2% citric acid-CO2 cured | 57.97 | 14.49 | 23.19 | 4.35 |
With 0% Citric Acid | With 0.2% Citric Acid | With 0.2% Citric Acid-CO2 Cured |
---|---|---|
3.21 | 3.34 | 3.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Shi, F.; Wang, H. Influence of Citric Acid on the Fundamental Properties of CO2 Cured Magnesium Oxysulfate Paste. Materials 2023, 16, 1315. https://doi.org/10.3390/ma16031315
Sun H, Shi F, Wang H. Influence of Citric Acid on the Fundamental Properties of CO2 Cured Magnesium Oxysulfate Paste. Materials. 2023; 16(3):1315. https://doi.org/10.3390/ma16031315
Chicago/Turabian StyleSun, Houchao, Feiting Shi, and Hui Wang. 2023. "Influence of Citric Acid on the Fundamental Properties of CO2 Cured Magnesium Oxysulfate Paste" Materials 16, no. 3: 1315. https://doi.org/10.3390/ma16031315
APA StyleSun, H., Shi, F., & Wang, H. (2023). Influence of Citric Acid on the Fundamental Properties of CO2 Cured Magnesium Oxysulfate Paste. Materials, 16(3), 1315. https://doi.org/10.3390/ma16031315