Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental/Materials
2.2. Extraction and Isolation of Pyrroloiminoquinones from Tsitsikamma Favus
- Compounds isolated:
2.3. Preparation of Sargassum Incisifolium Aqueous Extracts (SiAE)
2.4. Synthesis of AuNPs
2.5. Stability Studies
2.6. Loading of Doxorubicin (3) and the Isolated Pyrroloiminoquinone Alkaloids (5–7) onto sAuNPs
2.7. Drug Entrapment and Loading Efficiency
2.8. Biological Studies
2.9. Determination of sAuNP Uptake in MCF-7 Cells Using ICP-OES
3. Results and Discussion
3.1. Characterization of the Pyrroloiminoquinone Alkaloids Isolated from Tsitsikamma Favus
3.2. Characterization of the Seaweed Aqueous Extracts
3.3. Synthesis and Characterization of cAuNPs, sAuNPs and Drug Loaded AuNPs
3.4. Stability of the cAuNPs and sAuNPs
3.5. Preparation of the Pyrroloiminoquinone (5–7) Loaded sAuNPs
3.6. Preparation of the Doxorubicin (3) Loaded sAuNPs
3.7. Doxorubicin Release/Desorption
3.8. sAuNP Cellular Uptake Analysis Using ICP-OES
3.9. Biological Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.-W.; Roh, J.K.; Wee, H.-J.; Kim, C. Cancer Drug Discovery; Springer: Berlin/Heidelberg, Germany, 2016; pp. 113–134. [Google Scholar]
- Blagosklonny, M.V. Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 2004, 3, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wei, Q.; Zhou, Y.; Wang, J.; Liu, Q.; Xu, H. A systematic analysis of FDA-approved anticancer drugs. BMC Syst. Biol. 2017, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.T.; Jindal, A. Anticancer Plants: Clinical Trials and Nanotechnology; Springer: Singapore, 2017; pp. 27–50. [Google Scholar]
- Sztandera, K.; Gorzkiewicz, M.; Klajnert-Maculewicz, M. Gold nanoparticles in cancer treatment. Mol. Pharm. 2019, 16, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Thambiraj, S.; Vijayalakshmi, R.; Shankaran, D.R. An effective strategy for development of docetaxel encapsulated gold nanoformulations for treatment of prostate cancer. Sci. Rep. 2021, 11, 2808. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011, 5, 3679–3692. [Google Scholar] [CrossRef]
- Hale, S.J.M.; Perrins, R.D.; Garcı, A.C.E.; Pace, A.; Peral, U.; Patel, K.R.; Robinson, A.; Williams, P.; Ding, Y.; Saito, G.; et al. DM1 Loaded Ultrasmall Gold Nanoparticles Display Significant Efficacy and Improved Tolerability in Murine Models of Hepatocellular Carcinoma. Bioconjugate Chem. 2019, 30, 703–713. [Google Scholar] [CrossRef]
- Du, Y.; Xia, L.; Jo, A.; Davis, R.M.; Bissel, P.; Ehrich, M.; Kingston, D.G.I. Synthesis and Evaluation of Doxorubicin-Loaded Gold Nanoparticles for Tumor-Targeted Drug Delivery. Bioconjugate Chem. 2018, 29, 420–430. [Google Scholar] [CrossRef]
- Javed, R.; Ghonaim, R.; Shathili, A.; Khalifa, S.A.; El-Seedi, H.R. Phytonanotechnology: A greener approach for biomedical applications. In Biogenic Nanoparticles for Cancer Theranostics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 43–86. [Google Scholar]
- Manivasagan, P.; Bharathiraja, S.; Bui, N.Q.; Jang, B.; Oh, Y.O.; Lim, I.G.; Oh, J. Doxorubicin-loaded fucoidan capped gold nanoparticles for drug delivery and photoacoustic imaging. International journal of biological macromolecules. Int. J. Biol. Macromol. 2016, 91, 578–588. [Google Scholar] [CrossRef]
- Alle, M.; G, B.R.; Kim, T.H.; Park, S.H.; Lee, S.H.; Kim, J.C. Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydr. Polym. 2020, 229, 115511. [Google Scholar] [CrossRef]
- Chen, X.; Han, W.; Zhao, X.; Tang, W.; Wang, F. Epirubicin-loaded marine carrageenan oligosaccharide capped gold nanoparticle system for pH-triggered anticancer drug release. Sci. Rep. 2019, 9, 6754. [Google Scholar] [CrossRef] [Green Version]
- Borker, S.; Pokharkar, V. Engineering of pectin-capped gold nanoparticles for delivery of doxorubicin to hepatocarcinoma cells: An insight into mechanism of cellular uptake. Artif. Cells Nanomed. Biotechnol. 2018, 46, 826–835. [Google Scholar] [CrossRef]
- Ragubeer, N.; Beukes, D.; Limson, J.L. Critical assessment of voltammetry for rapid screening of antioxidants in marine algae. J. Food Chem. 2010, 121, 227–232. [Google Scholar] [CrossRef]
- Mmola, M.; Roes-Hill, M.L.; Durrell, K.; Bolton, J.J.; Sibuyi, N.; Meyer, M.R.; Beukes, D.R.; Antunes, E. Enhanced antimicrobial and anticancer activity of silver and gold nanoparticles synthesised using Sargassum incisifolium aqueous extracts. Molecules 2016, 21, 1633. [Google Scholar] [CrossRef]
- Seaweeds of the South African Coast. Available online: http://southafrseaweeds.uct.ac.za/descriptions/brown/sargassum_incisifolium.php (accessed on 26 December 2022).
- Afolayan, A.F.; Bolton, J.J.; Lategan, C.A.; Smith, P.J.; Beukes, D.R. Fucoxanthin, tetraprenylated toluquinone and toluhydroquinone metabolites from Sargassum heterophyllum inhibit the in vitro growth of the malaria parasite Plasmodium falciparum. Z. Nat. C 2008, 63, 848–852. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Hwang, P.A. Clinical applications of fucoidan in translational medicine for adjuvant cancer therapy. Clin. Transl. Med. 2019, 8, 15. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Tang, Y.; Mao, J. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review. J. Carbohydr. Polym. 2020, 228, 115381. [Google Scholar] [CrossRef]
- Usoltseva, R.V.; Anastyuk, S.D.; Shevchenko, N.M.; Surits, V.V.; Silchenko, A.S.; Isakov, V.V.; Zvyagintseva, T.N.; Thinh, P.D.; Ermakova, S.P. Polysaccharides from brown algae Sargassum duplicatum: The structure and anticancer activity in vitro. Carbohydr. Polym. 2017, 175, 547–556. [Google Scholar] [CrossRef]
- Antunes, E.M.; Beukes, D.R.; Kelly, M.; Samaai, T.; Barrows, L.R.; Marshall, K.M.; Sincich, C.; Davies-Coleman, M.T. Cytotoxic pyrroloiminoquinones from four new species of South African latrunculid sponges. J. Nat. Prod. 2004, 67, 1268–1276. [Google Scholar] [CrossRef]
- Hooper, G.; Davies-Coleman, M.; Kelly-Borges, M.; Coetzee, P. New alkaloids from a south african Latrunculid sponge. Tetrahedron Lett. 1996, 37, 7135–7138. [Google Scholar] [CrossRef]
- Tobwala, S.; Fan, W.; Hines, C.J.; Folk, W.R.; Ercal, N. Antioxidative potential of Sutherlandia frutescenes and its protective effects against oxidative stress in various cell cultures. BMS Complement. Altern. Med. 2014, 14, 271. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, J.; Stevenson, P.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Manivasagan, P.; Bharathiraja, S.; Moorthy, S.M.; Oh, Y.O.; Song, K.; Seo, H.; Oh, J. Anti-EGFR antibody conjugation of fucoidan-coated gold nanorods as novel photothermal ablation agents for cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 14633–14646. [Google Scholar] [CrossRef] [PubMed]
- Bhatterjee, S.J. DLS and zeta potential–what they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Bohnert, T.; Gan, L.J. Plasma protein binding: From discovery to development. J. Pharm. Sci. 2013, 102, 2953–2994. [Google Scholar] [CrossRef]
- Paciotti, G.; Zhao, J.; Cao, S.; Brodie, P.J.; Tamarkin, L.; Huhta, M.; Myer, L.D.; Friedman, J.; Kingston, D.G. Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjugate Chem. 2016, 27, 2646–2657. [Google Scholar] [CrossRef]
- Polizzi, M.A.; Stasko, N.A.; Schoenfisch, M.H. Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir 2007, 23, 4938–4943. [Google Scholar] [CrossRef]
- Curry, D.; Cameron, A.; MacDonald, B.; Nganou, C.; Scheller, H.; Marsh, J.; Beale, S.; Lu, M.; Shan, Z.; Kaliaperumal, R.; et al. Adsorption of doxorubicin on citrate-capped gold nanoparticles: Insights into engineering potent chemotherapeutic delivery systems. Nanoscale 2015, 7, 19611–19616. [Google Scholar] [CrossRef]
NaCl | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mM) | SPR (nm) | Hd (nm) | HSA (mg/mL) | T (°C) | pH | ||||||||||
0 | √ | (√) | 524 | (524) | 28.4 | (10.4) | 0 | √ | (√) | 37 | √ | (X) | 2.0 | √ | (X) |
50 | - | (√) | - | (524) | - | (28.3) | 1.25 | √ | (X) | 25 | √ | (√) | 4.0 | √ | (X) |
75 | - | (√) | - | (524) | - | (-) | 2.50 | √ | (X) | 4 | √ | (√) | 7.0 | √ | (√) |
100 | √ | (X) | 524 | (703) | 46.1 | (811) | 6.25 | √ | (X) | −20 | √ | (X) | 9.0 | √ | (X) |
1000 | √ | (√) | 524 | 67.4 | 12.50 | √ | (X) | −50 | √ | (X) | 12.0 | √ | (X) | ||
5000 | √ | (√) | 703 | 152.7 | 25.00 | √ | - | ||||||||
6000 | √ | (X) | - | 50.00 | √ | - |
Parameter | sAuNPs-Dox * | Dox-Fuc-AuNPs [26] |
---|---|---|
NP reaction temperature | 20 °C | 80 °C |
NP pH | 4.1 | Not reported |
Payload concentration | 1 mM | 0.1 mM |
NP conjugation method | Adjusted with NaOH 1 | Direct |
Release of payload | 17% at pH 7.4 (after 72 h) | 10% at pH 7.4 (after 72 h) |
IC50 (μg/mL) | |||
---|---|---|---|
Compound | Compound Alone | AuNP-1 a | AuNP-2 b |
Doxorubicin (3) | 17.9 | 15.9 | >50 |
Tsitsikammamine A (6) | 11.1 | >50 c | >50 c |
Tsitsikammamine B (7) | 9.9 | 16.0 | >50 c |
14-bromodiscorhabdin C (5) | 8.3 | 19.9 | >50 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mubaiwa, B.; Lerata, M.S.; Sibuyi, N.R.S.; Meyer, M.; Samaai, T.; Bolton, J.J.; Antunes, E.M.; Beukes, D.R. Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. Materials 2023, 16, 1319. https://doi.org/10.3390/ma16031319
Mubaiwa B, Lerata MS, Sibuyi NRS, Meyer M, Samaai T, Bolton JJ, Antunes EM, Beukes DR. Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. Materials. 2023; 16(3):1319. https://doi.org/10.3390/ma16031319
Chicago/Turabian StyleMubaiwa, Byron, Mookho S. Lerata, Nicole R. S. Sibuyi, Mervin Meyer, Toufiek Samaai, John J. Bolton, Edith M. Antunes, and Denzil R. Beukes. 2023. "Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids" Materials 16, no. 3: 1319. https://doi.org/10.3390/ma16031319
APA StyleMubaiwa, B., Lerata, M. S., Sibuyi, N. R. S., Meyer, M., Samaai, T., Bolton, J. J., Antunes, E. M., & Beukes, D. R. (2023). Green Synthesized sAuNPs as a Potential Delivery Platform for Cytotoxic Alkaloids. Materials, 16(3), 1319. https://doi.org/10.3390/ma16031319