Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System
Abstract
:1. Motivation
2. Mechanical Properties of Mg-Zn-Ca Alloys
Alloy/Composition | Processing | Grain Size, | Yield Strength, | Tensile Strength, MPa | Elongation | Ref |
---|---|---|---|---|---|---|
μm | MPa | (%) | ||||
Pure Mg | – | 27.5 | 97.5 | 28.9 | [103] | |
Mg-1.0Zn | As-cast | 20 | 101 | 6.9 | [104] | |
Mg-2.0Zn | 27 | 146 | 12.2 | |||
Mg-3.0Zn | 47 | 168 | 13.7 | |||
Mg-4.0Zn | 58 | 217 | 15.8 | |||
Mg-5.0Zn | 68 | 185 | 9.2 | |||
Mg-6.0Zn | 69 | 182 | 7.2 | |||
Mg-0.4Zn (RD) | Hot rolling | 60 | 93 | 186 | 15.5 | [105] |
Mg-1Zn | As-cast | 25.5 | 134 | 18.2 | [106] | |
Mg–6Zn | Extrusion | 279.5 | 18.8 | [23] | ||
Mg– 6Zn | Extrusion | 277–281 | 18–19.6 | [107] | ||
Mg-6Zn | Extrusion | 140 | 280 | 18 | [104] | |
Mg-0.8Ca | Poly filament | [108] | ||||
Mg-0.8Ca | Extrusion | 207 | 13 | [107] | ||
Mg-0.8Ca | 0.5 mm wire | 315 | 1.9 | [107] | ||
Mg-1Ca | As-cast | 40 | 71.38 | 1.87 | [109] | |
Mg–1Ca | Extrusion | 239.6 | 10.6 | [110] | ||
Mg-1Ca | Hot rolling | 166.7 | 3 | [109] | ||
Mg–1Ca | 72 | 179.5 | 11.5 | [111] | ||
Mg–1Ca | Extrusion | 148 | 276 | [112] | ||
Mg–2Ca | 77.2 | 184.6 | 11.2 | [111] | ||
Mg-2Ca | As-cast | 47.3 | 115.2 | 3.05 | [113] | |
Mg-4Ca | – | 34.5 | 77.4 | 53.3 | [103] | |
Mg–5Ca | 94.1 | 188.4 | 9.4 | [111] | ||
Mg–10Ca | 109.4 | 190 | 9.2 | [111] | ||
Mg–15Ca | 172.3 | 208.1 | 3.2 | [111] | ||
Mg–20Ca | 234.9 | 291.3 | 1.7 | [111] | ||
Mg-5.74Zn (Z6) | Extrusion | 125 | 276 | 29.7 | [114] | |
Mg-6.01Zn-0.36Ca (Zx60) | 169 | 276 | 21.4 | |||
Mg-6.01Zn-0.82Ca (Zx60) | 230 | 304 | 15.3 | |||
Mg–4.0Zn–0.2Ca (ZX40) | 58.1 | 225 | 17.5 | [104] | ||
Mg–4.0Zn–0.5Ca (ZX40) | 70 | 180 | 12.3 | |||
Mg–4.0Zn–1.0Ca (ZX41) | 83 | 175 | 8.7 | |||
Mg–4.0Zn–1.5Ca (ZX41) | 83 | 167 | 7.1 | |||
Mg–4.0Zn–2.0Ca (ZX42) | 90 | 143 | 2.1 | |||
Mg-0.3Zn-0.1Ca (ZX00) | Hot rolling | 58 | 92.5 | 182.5 | 24 | [105] |
Mg-1Zn-0.3Ca (ZX10) | Extrusion | 2 | 240 | 255 | 27 | [115] |
Mg-1Zn-0.3Ca (ZX10) | Extrusion | 1.6 | 238 | 265 | 31 | [116] |
1.8 | 247 | 268 | 20 | |||
3 | 184 | 240 | 32 | |||
6.8 | 140 | 226 | 25 | |||
Mg– 1.2Zn–0.5Ca–0.5Mn (ZXM100) | As-cast | 60.3 | 121.3 | 3.2 | [117] | |
Mg–1.2Zn–0.5Ca–0.5Mn (ZXM100) | Heat-treated | 84.3 | 150.7 | 4.9 | [117] | |
Mg-0.21Zn-0.30Ca-0.14Mn (ZXM100) | Extrusion | 16.2 | 125 | 180 | 32 | [118] |
7.3 | 165 | 215 | 30 | |||
305 | 310 | 20 | ||||
Mg-2Zn-2Ca-0.5Mn (ZXM220) | – | 78.3 | 168.5 | 64.5 | [103] | |
Mg-4Zn-2Ca-0.5Mn (ZXM420) | – | 83.1 | 189.2 | 69.1 | [103] | |
Mg-4Zn-4Ga | ECAP | 5 | 165 | 290 | 22 | [119] |
Mg-4Zn-4Ga-0.2Ca | ECAP | 10 | 165 | 255 | 17 | [119] |
Mg-4.67Zn-1.27Ca (ZX41) | Extrusion | 1 | 291 | 329 | 15.8 | [120] |
Mg-4.50Zn-1.13Ca (ZX41) | Extrusion | 180 | 212 | 13.5 | [121,122] | |
290 | 305 | 10 | ||||
12.3 | 173 | 251 | 22.7 | |||
5.2 | 228 | 284 | 16.6 | |||
3.8 | 227 | 285 | 15.3 | |||
3.6 | 234 | 284 | 17.3 | |||
1.8 | 320 | 333 | 11.2 | |||
1 | 370 | 378 | 4.5 | |||
Mg-5Zn-0.5Ca | Heat-treated | 91 | 158 | 4.9 | [123] | |
Mg–1.0Zn | Extrusion | 20–50 | 140 | 235 | 16.2 | [124] |
Mg–1.0Zn–0.2Ca (ZX10) | 5–20 | 140 | 237 | 35.5 | ||
Mg–1.0Zn–0.5Ca (ZX10) | 6–10 | 105 | 210 | 44 | ||
Mg–1.0Zn–0.3Ca (ZX10) | ECAP | 4–8 | 106 | 215 | 23 | [125] |
Mg–1.0Zn–0.2Ca (ZX10) | ECAP | 3.7 | 90 | 225 | 16 | [126] |
ECAP + HPT | 0.25 | 220 | 263 | 6 | ||
ECAP + HPT | 0.2 | 230 | 283 | 2.5 | ||
Mg-2Zn-0.2Ca (ZX20) | Extrusion | 118 | 211 | 24.4 | [112] | |
Mg–4.0Zn–0.15Ca (ZX40) | ECAP | 28 | 71 | 265 | 20 | [20] |
Mg–4.0Zn–0.15Ca (ZX40) | ECAP + RS | 10 | 348 | 381 | 5 | |
Mg–4.0Zn–0.56Ca (ZX40) | ECAP | 9 | 127 | 271 | 22 | |
Mg-4.50Zn-1.13Ca (ZX41) | As-cast | |||||
Extrusion | ||||||
Mg-1Zn-0.2Ca (ZX10) | As-cast | 185 | 37 | 165 | 22 | [96] |
MIF | 2.9 | 100 | 200 | 25 | ||
MIF + WR | 2.2 | 210 | 260 | 21 | ||
Mg-1Zn-0.5Ca (ZX10) | As-cast | 140–160 | 55 | 120 | 5 | [127] |
Extrusion | 0.5–0.6 | 297 | 300 | 8 | ||
2–3 | 197 | 256 | 17 | |||
5–6 | 120 | 200 | 40 | |||
8–13 | 105 | 205 | 44 | |||
20–30 | 99 | 201 | 36 | |||
Mg-5.12Zn-0.32Ca (ZX50) | Extrusion | 2 | 250 | 312 | 13 | [101] |
ECAP | 0.7 | 230 | 290 | 18.5 | ||
Mg-0.95Zn-0.9Ca (ZX00) | Twin-roll casting | 7.7 | 155 | 234 | 12 | [128] |
Mg-5.99Zn-0.98Ca (ZX60) | 7.4 | 164 | 259 | 17 | ||
Mg–5.25Zn–0.6Ca (ZX50) | Extrusion | 220 | 270 | 21 | [129] | |
Mg-5.25Zn-0.6Ca-0.3Mn ZXM(500) | 272 | 305 | 19 | |||
Mg–6.45Zn–0.2Ca-0.2Mn (ZXM(600) | Extrusion | 1.8 | 290 | 304 | 22 | [130] |
Mg-7Zn-2Ca-0.5Mn (ZXM720) | – | 45.4 | 140.7 | 82.2 | [103] | |
Mg–6.6Zn–0.19Ca (ZX60) | Extrusion | 148 | 275 | 26 | [127] | |
Mg–5.7Zn–0.17Ca-0.84Zr (ZXK600) | 310 | 357 | 18 | |||
Mg-5Zn-0.3Z-0.25Ca-0.1Mn (ZXM500) | Extrusion | 330 | 365 | 19.5 | [131] | |
260 | 320 | 24 | ||||
305 | 330 | 23 | ||||
305 | 345 | 19.5 | ||||
210 | 295 | 26 | ||||
250 | 305 | 25.5 | ||||
260 | 310 | 24 | ||||
Mg–5.99Zn–1.76Ca–0.35Mn | Extrusion | 219 | 267 | 15.8 | [132] | |
(ZXM610) | 289 | 310 | 16 |
3. Corrosion Properties: Modern Insights and Challenges
3.1. Mg-Zn-Ca in Comparison with Other Compositions
3.2. Methodological Aspects of Corrosion Tests
3.2.1. Testing Conditions
3.2.2. Methods for Determining the Corrosion Rate
3.3. Anisotropy of Corrosion Behavior
3.4. Corrosion Compatibility
4. Environmentally Affected Mechanical Response
4.1. Stress Corrosion Cracking in Mg Alloys
4.2. Fatigue and Corrosion Fatigue
Alloy/Composition | Processing | d, μm | σ0.2, MPa | σUTS, MPa | εf, (%) | σ-1, MPa | Ref | |
---|---|---|---|---|---|---|---|---|
Air, Nfc = 2 × 107 | Ringer, Nfc | |||||||
ZX10/ Mg–1Zn–0.16Ca | MIF | 2.9 ± 1.6 | 100 ± 5 | 205 ± 5 | 25 ± 2 | 85 ± 3 | 65 ± 3 (3 × 105) 60 ± 3 (1 × 106) | Present work |
ZK60/ Mg–5.7Zn–0.9Zr | Extrusion | 3.9 ± 2.2 | 318 ± 3 | 341 ± 2 | 14 ± 2 | 140 ± 3 | 80 ± 3 (3 × 105) 60 ± 3 (1 × 106) | [231] |
HP–Mg | Extrusion | − | 121 ± 4 | 208 ± 6 | 11 ± 2 | 85 (4 × 106) | 52 * (4 × 106) | [112] |
Mg–1Ca | Extrusion | − | 148 ± 3 | 276 ± 6 | 14 ± 2 | 90 (4 × 106) | 70 * (4 × 106) | |
Mg–2Zn–0.2Ca | Extrusion | − | 118 ± 6 | 211 ± 11 | 24 ± 2 | 83 (4 × 106) | 70 * (4 × 106) | |
WE43 alloy | Extrusion | − | 217 ± 3 | 298 ± 4 | 22 ± 5 | 110 (107) | 40 * (106) | [112] |
Mg–1Zn–0.2Ca | Extrusion | 1.2 ± 0.8 | − | − | − | 106 (107) | 60 * (5 × 106) | [208] |
Mg–1Zn–0.3Ca | Extrusion | 7 ± 5 | − | − | − | 81 (107) | 60 * (5 × 106) | |
Mg–Zn–Y–Nd | Extrusion | 6.9 ± 3.2 | 159 ± 8 | 229 ± 6 | 27 ± 1 | 65 (107) | 50 * (3.5 × 106) | [234] |
5. Concluding Remarks and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luthringer, B.J.C.; Feyerabend, F.; Willumeit-Römer, R. Magnesium-Based Implants: A Mini-Review. Magnes. Res. 2014, 27, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable magnesium alloys developed as bone repair materials: A review. Scanning 2018, 2018, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Persaud-Sharma, D.; McGoron, A. Biodegradable magnesium alloys: A review of material development and applications. J. Biomim. Biomater. Tissue Eng. 2012, 12, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.F.; Gu, X.N.N.; Witte, F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014, 77, 1–34. [Google Scholar] [CrossRef]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef]
- Wang, H.; Shi, Z.M.; Yang, K. Magnesium and magnesium alloys as degradable metallic biomaterials. Adv. Mater. Res. 2008, 32, 207–210. [Google Scholar] [CrossRef]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef]
- Witte, F.; Hort, N.; Vogt, C.; Cohen, S.; Kainer, K.U.; Willumeit, R.; Feyerabend, F. Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 2008, 12, 63–72. [Google Scholar] [CrossRef]
- Ranganath, L.; Srinath, A. Bioimplants and biomaterials: A Review. Trends Biomater. Artif. Organs 2021, 35, 405–411. [Google Scholar]
- Ishii, H.; Kawarazaki, T.; Fujimura, Y. Fatigue in binary alloys of bcc iron. Metall. Trans. A 1984, 15, 679–691. [Google Scholar] [CrossRef]
- Barriuso, S.; Chao, J.; Jiménez, J.A.; García, S.; González-Carrasco, J.L. Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices. J. Mech. Behav. Biomed. Mater. 2014, 30, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Davis, J. Handbook of Materials for Medical Devices; ASM International: Materials Park, OH, USA, 2003; ISBN 0-87170-790-X. [Google Scholar]
- Niinomi, M. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A 1998, 243, 231–236. [Google Scholar] [CrossRef]
- Hosseini, S. Fatigue of Ti-6Al-4V. In Biomedical Engineering—Technical Applications in Medicine; InTech: London, UK, 2012. [Google Scholar]
- Campanelli, L.C.; Claros, C.A.E.; Freitas, B.J.M.; Reis, D.A.P.; Jorge, A.M.; Bolfarini, C. Effect of hydrogen pick-up on the fatigue behavior of the β-Type Ti-12Mo-6Zr-2Fe alloy with ω-Nanoprecipitation. Mater. Lett. 2021, 282, 128740. [Google Scholar] [CrossRef]
- Yamagishi, H.; Fukuhara, M.; Chiba, A. Determination of the cyclic-tension fatigue of extruded pure magnesium using multiple ultrasonic waves. Mater. Trans. 2010, 51, 1255–1263. [Google Scholar] [CrossRef]
- Kawamura, Y.; Hayashi, K.; Inoue, A.; Masumoto, T. Rapidly solidified powder metallurgy Mg97Zn1Y2Alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 2001, 42, 1172–1176. [Google Scholar] [CrossRef]
- Wan, Y.; Tang, B.; Gao, Y.; Tang, L.; Sha, G.; Zhang, B.; Liang, N.; Liu, C.; Jiang, S.; Chen, Z.; et al. Bulk Nanocrystalline high-strength magnesium alloys prepared via rotary swaging. Acta Mater. 2020, 200, 274–286. [Google Scholar] [CrossRef]
- Vinogradov, A.; Vasilev, E.; Kopylov, V.I.V.I.; Linderov, M.; Brilevesky, A.; Merson, D. High Performance fine-grained biodegradable Mg-Zn-Ca alloys processed by severe plastic deformation. Metals 2019, 9, 186. [Google Scholar] [CrossRef]
- Vasilev, E.V.; Kopylov, V.I.; Linderov, M.L.; Brilevsky, A.I.; Merson, D.L.; Vinogradov, A.Y. High strength and fatigue properties of Mg-Zn-Ca alloys after severe plastic deformation. Lett. Mater. 2019, 9, 157–161. [Google Scholar] [CrossRef]
- Salahshoor, M.; Guo, Y. Biodegradable orthopedic magnesium-calcium (MgCa) alloys, processing, and corrosion performance. Materials 2012, 5, 135–155. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Smith, C.; Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014, 10, 4561–4573. [Google Scholar] [CrossRef]
- Suresh, S. Fatigue of Materials; Cambridge University Press: London, UK, 1998. [Google Scholar]
- Walker, J.; Shadanbaz, S.; Woodfield, T.B.F.; Staiger, M.P.; Dias, G.J. Magnesium biomaterials for orthopedic application: A review from a biological perspective. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1316–1331. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.-L.; Liu, M.; Shi, Z.; Cao, F.; Dargusch, M.S. Review of recent developments in the field of magnesium corrosion. Adv. Eng. Mater. 2015, 17, 400–453. [Google Scholar] [CrossRef]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.; King, A.; Troakes, C.; Exley, C. Aluminium in brain tissue in familial alzheimer’s disease. J. Trace Elem. Med. Biol. 2017, 40, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A. The toxicology of aluminum in the brain: A review. Neurotoxicology 2000, 21, 813–828. [Google Scholar]
- Lidsky, T.I. Is the aluminum hypothesis dead? J. Occup. Environ. Med. 2014, 56, S73–S79. [Google Scholar] [CrossRef] [PubMed]
- Pagano, G.; Guida, M.; Tommasi, F.; Oral, R. Health effects and toxicity mechanisms of rare earth elements—Knowledge gaps and research prospects. Ecotoxicol. Environ. Saf. 2015, 115, 40–48. [Google Scholar] [CrossRef]
- Liu, D.; Yang, D.; Li, X.; Hu, S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. J. Mater. Res. Technol. 2019, 8, 1538–1549. [Google Scholar] [CrossRef]
- Istrate, B.; Munteanu, C.; Antoniac, I.V.; Lupescu, Ș.C. Current research studies of Mg–Ca–Zn biodegradable alloys used as orthopedic implants—Review. Crystals 2022, 12, 1468. [Google Scholar] [CrossRef]
- Han, J.; Chen, X.; Liu, Z.; Zhang, S.; Chen, M.; Mao, Z.; Luo, Z.; Zhang, X.; Tian, Y.; Cai, Y. Effect of friction stir processing on the corrosion behavior of an Mg-Zn-Ca composite containing 1.0 Wt% MgO. Mater. Charact. 2022, 192, 112249. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, Y.; Li, R.; Shen, Y.; Lei, J. Achieving exceptional improvement of yield strength in Mg–Zn–Ca alloy wire by nanoparticles induced by extreme plastic deformation. Mater. Sci. Eng. A 2022, 853, 143733. [Google Scholar] [CrossRef]
- Yang, L.; Feng, Y.; He, Y.; Yang, L.; Liu, H.; Wang, X.; Peng, C.; Wang, R. Effect of Sc/Sm microalloying on microstructural and properties of Mg-2Zn-0.3Ca biodegradable alloy. J. Alloys Compd. 2022, 907, 164533. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Bian, M.; Huang, X.; Tsukada, Y.; Koyama, T.; Chino, Y. Simulation-aided analysis on mechanical properties of dilute Mg-Zn-Ca alloy sheets. J. Alloys Compd. 2022, 906, 164285. [Google Scholar] [CrossRef]
- Basu, I.; Chen, M.; Wheeler, J.; Schäublin, R.E.; Löffler, J.F. Segregation-driven exceptional twin-boundary strengthening in lean Mg–Zn–Ca alloys. Acta Mater. 2022, 229, 117746. [Google Scholar] [CrossRef]
- Du, S.; Yang, K.; Li, M.; Li, J.R.; Ren, Y.P.; Huang, Q.Y.; Pan, H.C.; Qin, G.W. Achieving high strength above 400 MPa in conventionally extruded Mg-Ca-Zn ternary alloys. Sci. China Technol. Sci. 2022, 65, 519–528. [Google Scholar] [CrossRef]
- Feng, Y.; Chang, L.; Zhu, S.; Yang, Y.; Wei, B.; Lv, M.; Wang, J.; Guan, S. Preparing a bioactive (Chitosan/sodium hyaluronate)/SrHA coating on Mg–Zn–Ca alloy for orthopedic implant applications. Front. Mater. 2022, 8, 5. [Google Scholar] [CrossRef]
- Khrustalyov, A.P.; Akhmadieva, A.; Monogenov, A.N.; Zhukov, I.A.; Marchenko, E.S.; Vorozhtsov, A.B. Study of the Effect of diamond nanoparticles on the structure and mechanical properties of the medical Mg–Ca–Zn magnesium alloy. Metals 2022, 12, 206. [Google Scholar] [CrossRef]
- Schäublin, R.E.; Becker, M.; Cihova, M.; Gerstl, S.S.A.; Deiana, D.; Hébert, C.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. Precipitation in lean Mg–Zn–Ca alloys. Acta Mater. 2022, 239, 118223. [Google Scholar] [CrossRef]
- Roumina, R.; Lee, S.; Berman, T.D.; Shanks, K.S.; Allison, J.E.; Bucsek, A. The Dynamics of recrystallized grains during static recrystallization in a hot-compressed Mg-3.2Zn-0.1Ca Wt.% alloy using in-situ far field high-energy diffraction microscopy. Acta Mater. 2022, 234, 118039. [Google Scholar] [CrossRef]
- Pulido-González, N.; Hidalgo-Manrique, P.; García-Rodríguez, S.; Torres, B.; Rams, J. Effect of heat treatment on the mechanical and biocorrosion behaviour of two Mg-Zn-Ca alloys. J. Magnes. Alloy. 2022, 10, 540–554. [Google Scholar] [CrossRef]
- Nakata, T.; Xu, C.; Ito, Y.; Kamado, S. Role of homogenization on tensile properties and microstructures in a dilute Mg–Zn–Ca–Mn alloy sheet. Mater. Sci. Eng. A 2022, 833, 142541. [Google Scholar] [CrossRef]
- Li, Y.J.; Fang, Y.; Wang, C.; Hua, Z.M.; Gao, Y.; Zha, M.; Wang, H.Y. Enhanced strength-ductility synergy achieved through twin boundary pinning in a bake-hardened Mg–2Zn-0.5Ca alloy. Mater. Sci. Eng. A 2022, 831, 140968. [Google Scholar] [CrossRef]
- Klevtsov, G.V.; Valiev, R.Z.; Klevtsova, N.A.; Fesenyuk, M.V.; Kulaysova, O.B.; Pigaleva, I.N. Strength and fracture mechanism of a magnesium alloy for medical applications after equal-channel angular pressing. Lett. Mater. 2022, 12, 203–208. [Google Scholar] [CrossRef]
- Khudododova, G.D.; Kulyasova, O.B.; Nafikov, R.K.; Islamgaliev, R.K. The structure and mechanical properties of biomedical magnesium alloy Mg–1%Zn–0.2%Ca. Front. Mater. Technol. 2022, 2, 105–112. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, C.; Liang, T.; Si, X.; Jiang, C. Enhanced Mechanical Properties of an Mg-Zn-Ca alloy via high pressure torsion and annealing for use in bone implantation. Rev. Mater. 2022, 27, 12p. [Google Scholar] [CrossRef]
- Huang, X.; Xin, Y.; Cao, Y.; Li, W.; Huang, G.; Zhao, X.; Liu, Q.; Wu, P. Understanding the mechanisms of texture evolution in an Mg-2Zn-1Ca alloy during cold rolling and annealing. Int. J. Plast. 2022, 158, 103412. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Huang, Q.; Li, Y.; Yang, Y. Anisotropic mechanical and corrosion properties of directionally solidified Mg-3Zn-0.2Ca alloy. J. Alloys Compd. 2022, 895, 162687. [Google Scholar] [CrossRef]
- Hama, T.; Higuchi, K.; Yoshida, H.; Jono, Y. Work-hardening behavior of a ZX10 magnesium alloy sheet under monotonic and reverse loadings. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2022; Volume 926, pp. 926–932. [Google Scholar]
- Baigonakova, G.; Marchenko, E.; Zhukov, I.; Vorozhtsov, A. Structure, Cytocompatibility and biodegradation of nanocrystalline coated Mg–Ca–Zn alloys. Vacuum 2023, 207, 111630. [Google Scholar] [CrossRef]
- Kim, S.R.; Lee, K.M.; Kim, J.H.; Choi, Y.J.; Park, H.I.; Jung, H.C.; Roh, H.J.; Han, J.H.L.; Kim, J.R.; Lee, B.K. Biocompatibility evaluation of peo-treated magnesium alloy implants placed in rabbit femur condyle notches and paravertebral muscles. Biomater. Res. 2022, 26, 1–19. [Google Scholar] [CrossRef]
- Rahman, M.; Chowdhury, M.A.; Mia, M.S.; Ali, M.R.; Rahman, A.; Ali, M.O.; Mahmud, S. Fabrication and characterization of hybrid coating on Mg–Zn–Ca Mg alloy for enhanced corrosion and degradation resistance as medical implant. Ceram. Int. 2022, 48, 23314–23324. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Wang, W.; Zhao, Y.; Chen, M. Microstructure, corrosion resistance, and antibacterial properties of an Ag/Mg-Al layered double hydroxide coating synthesized in situ on biomedical Mg-Zn-Ca alloy. Ceram. Int. 2022, 48, 4172–4187. [Google Scholar] [CrossRef]
- Chaya, A.; Yoshizawa, S.; Verdelis, K.; Myers, N.; Costello, B.J.; Chou, D.-T.; Pal, S.; Maiti, S.; Kumta, P.N.; Sfeir, C. In vivo study of magnesium plate and screw degradation and bone fracture healing. Acta Biomater. 2015, 18, 262–269. [Google Scholar] [CrossRef]
- Sommer, N.G.; Hirzberger, D.; Paar, L.; Berger, L.; Ćwieka, H.; Schwarze, U.Y.; Herber, V.; Okutan, B.; Bodey, A.J.; Willumeit-Römer, R.; et al. Implant degradation of low-alloyed Mg–Zn–Ca in osteoporotic, old and juvenile rats. Acta Biomater. 2022, 147, 427–438. [Google Scholar] [CrossRef]
- Dargusch, M.S.; Balasubramani, N.; Yang, N.; Johnston, S.; Ali, Y.; Wang, G.; Venezuela, J.; Carluccio, J.; Lau, C.; Allavena, R.; et al. In vivo performance of a rare earth free Mg–Zn–Ca alloy manufactured using twin roll casting for potential applications in the cranial and maxillofacial fixation devices. Bioact. Mater. 2022, 12, 85–96. [Google Scholar] [CrossRef]
- Herber, V.; Labmayr, V.; Sommer, N.G.; Marek, R.; Wittig, U.; Leithner, A.; Seibert, F.; Holweg, P. Can hardware removal be avoided using bioresorbable Mg-Zn-Ca screws after medial malleolar fracture fixation? Mid-term results of a first-in-human study. Injury 2022, 53, 1283–1288. [Google Scholar] [CrossRef]
- Speich, M.; Bousquet, B.; Nicolas, G. Reference values for ionized, complexed, and protein-bound plasma magnesium in men and women. Clin. Chem. 1981, 27, 246–248. [Google Scholar] [CrossRef]
- Jahnen-Dechent, W.; Ketteler, M. Magnesium basics. Clin. Kidney J. 2012, 5, i3–i14. [Google Scholar] [CrossRef]
- Johnson, J.R.K.; Riechmann, G.C. Normal serum calcium levels by atomic absorption spectroscopy. Clin. Chem. 1968, 14, 1218–1225. [Google Scholar] [CrossRef]
- Kiilerich, S.; Christensen, M.S.; Naestoft, J.; Christiansen, C. Determination of zinc in serum and urine by atomic absorption spectrophotometry; relationship between serum levels of zinc and proteins in 104 normal subjects. Clin. Chim. Acta 1980, 105, 231–239. [Google Scholar] [CrossRef]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The physiological, biochemical, and molecular roles of zinc transporters in zinc homeostasis and metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Duygulu, O.; Brown, D.W.; Tomé, C.N.; Agnew, S.R. Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy, AZ31B, sheet. Mater. Sci. Eng. A 2008, 486, 545–555. [Google Scholar] [CrossRef]
- Vinogradov, A.; Serebryany, V.N.N.; Dobatkin, S.V.V. Tailoring Microstructure and properties of fine grained magnesium alloys by severe plastic deformation. Adv. Eng. Mater. 2018, 20, 1700785. [Google Scholar] [CrossRef]
- Vinogradov, A.; Orlov, D.; Danyuk, A.; Estrin, Y. Effect of grain size on the mechanisms of plastic deformation in wrought Mg–Zn–Zr alloy revealed by acoustic emission measurements. Acta Mater. 2013, 61, 2044–2056. [Google Scholar] [CrossRef]
- Vinogradov, A.; Orlov, D.; Estrin, Y. Improvement of fatigue strength of a Mg–Zn–Zr alloy by integrated extrusion and equal-channel angular pressing. Scr. Mater. 2012, 67, 209–212. [Google Scholar] [CrossRef]
- Wang, H.; Estrin, Y.; Fu, H.; Song, G.; Zúberová, Z. The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv. Eng. Mater. 2007, 9, 967–972. [Google Scholar] [CrossRef]
- Wang, H.; Estrin, Y.; Zúberová, Z. Bio-corrosion of a magnesium alloy with different processing histories. Mater. Lett. 2008, 62, 2476–2479. [Google Scholar] [CrossRef]
- Birbilis, N.; Ralston, K.D.; Virtanen, S.; Fraser, H.L.; Davies, C.H.J. Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Technol. 2010, 45, 224–230. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N. Effect of grain size on corrosion: A review. Corrosion 2010, 66, 075005-075005-13. [Google Scholar] [CrossRef]
- Ralston, K.D.; Birbilis, N.; Davies, C.H.J. Revealing the relationship between grain size and corrosion rate of metals. Scr. Mater. 2010, 63, 1201–1204. [Google Scholar] [CrossRef]
- StJohn, D.H.; Qian, M.; Easton, M.A.; Cao, P.; Hildebrand, Z. Grain refinement of magnesium alloys. Metall. Mater. Trans. A 2005, 36, 1669–1679. [Google Scholar] [CrossRef]
- Kaibyshev, O. Grain refinement in commercial alloys due to high plastic deformations and phase transformations. J. Mater. Process. Technol. 2001, 117, 300–306. [Google Scholar] [CrossRef]
- Kaibyshev, R. Dynamic recrystallization in magnesium alloys. In Advances in Wrought Magnesium Alloys; Woodhead Publishing: Sawston, UK, 2012; pp. 186–225. [Google Scholar]
- Kamado, S.; Kojima, Y. Development of magnesium alloys with high performance. Mater. Sci. Forum 2007, 546, 55–64. [Google Scholar] [CrossRef]
- Kaviani, M.; Ebrahimi, G.R.; Ezatpour, H.R. Improving the mechanical properties and biocorrosion resistance of extruded Mg-Zn-Ca-Mn alloy through hot deformation. Mater. Chem. Phys. 2019, 234, 245–258. [Google Scholar] [CrossRef]
- Horky, J.; Ghaffar, A.; Werbach, K.; Mingler, B.; Pogatscher, S.; Schäublin, R.; Setman, D.; Uggowitzer, P.J.; Löffler, J.F.; Zehetbauer, M.J. Exceptional strengthening of biodegradable Mg-Zn-Ca alloys through high pressure torsion and subsequent heat treatment. Materials 2019, 12, 2460. [Google Scholar] [CrossRef]
- Izumi, S.; Yamasaki, M.; Kawamura, Y. Relation between corrosion behavior and microstructure of Mg–Zn–Y alloys prepared by rapid solidification at various cooling rates. Corros. Sci. 2009, 51, 395–402. [Google Scholar] [CrossRef]
- Bär, F.; Berger, L.; Jauer, L.; Kurtuldu, G.; Schäublin, R.; Schleifenbaum, J.H.; Löffler, J.F. Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis. Acta Biomater. 2019, 98, 36–49. [Google Scholar] [CrossRef]
- Lee, T.; Yamasaki, M.; Kawamura, Y.; Go, J.; Park, S.H. High-strength AZ91 alloy fabricated by rapidly solidified flaky powder metallurgy and hot extrusion. Met. Mater. Int. 2019, 25, 372–380. [Google Scholar] [CrossRef]
- Fabijanic, D.; Taylor, A.; Ralston, K.D.; Zhang, M.-X.; Birbilis, N. Influence of surface mechanical attrition treatment attrition media on the surface contamination and corrosion of magnesium. Corrosion 2013, 69, 527–535. [Google Scholar] [CrossRef]
- Ramirez, A.; Qian, M.; Davis, B.; Wilks, T.; StJohn, D.H. Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys. Scr. Mater. 2008, 59, 19–22. [Google Scholar] [CrossRef]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Kawasaki, M.; Lee, H.J.; Jang, J.I.; Langdon, T.G. Strengthening of metals through severe plastic deformation. Rev. Adv. Mater. Sci. 2017, 48, 13–24. [Google Scholar]
- Valiev, R.Z.; Langdon, T.G. The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques. Adv. Eng. Mater. 2010, 12, 677–691. [Google Scholar] [CrossRef]
- Segal, V.M. Materials processing by simple shear. Mater. Sci. Eng. A 1995, 197, 157–164. [Google Scholar] [CrossRef]
- Bridgman, P.W. On torsion combined with compression. J. Appl. Phys. 1943, 14, 273–283. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. A Review on high-pressure torsion (HPT) from 1935 to 1988. Mater. Sci. Eng. A 2016, 652, 325–352. [Google Scholar] [CrossRef]
- Yang, X.; Sun, Z.; Xing, J.; Miura, H.; Sakai, T. Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Trans. Nonferrous Met. Soc. China 2008, 18, s200–s204. [Google Scholar] [CrossRef]
- Agnew, S.R. Deformation mechanisms of magnesium alloys. In Advances in Wrought Magnesium Alloys; Woodhead Publishing: Sawston, UK, 2012; pp. 63–104. [Google Scholar]
- Vinogradov, A. Mechanical properties of ultrafine-grained metals: New challenges and perspectives. Adv. Eng. Mater. 2015, 17, 1710–1722. [Google Scholar] [CrossRef]
- Agnew, S.R.; Stoica, G.M.; Chen, L.J.; Lillo, T.M.; Macheret, J.; Liaw, P.K. Equal Channel angular processing of magnesium alloys. In Ultrafine Grained Materials II; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 643–652. [Google Scholar]
- Merson, D.L.L.; Brilevsky, A.I.I.; Myagkikh, P.N.N.; Markushev, M.V.V.; Vinogradov, A. Effect of deformation processing of the dilute Mg-1Zn-0.2Ca alloy on the mechanical properties and corrosion rate in a simulated body fluid. Lett. Mater. 2020, 10, 217–222. [Google Scholar] [CrossRef]
- Asqardoust, S.; Zarei Hanzaki, A.; Abedi, H.R.; Krajnak, T.; Minárik, P. Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng. A 2017, 698, 218–229. [Google Scholar] [CrossRef]
- Yu, K.; Li, W.; Wang, R.; Wang, B.; Li, C. Effect of T5 and T6 tempers on a hot-rolled WE43 magnesium alloy. Mater. Trans. 2008, 49, 1818–1821. [Google Scholar] [CrossRef]
- Martynenko, N.S.; Lukyanova, E.A.; Serebryany, V.N.; Gorshenkov, M.V.; Shchetinin, I.V.; Raab, G.I.; Dobatkin, S.V.; Estrin, Y. Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing. Mater. Sci. Eng. A 2018, 712, 625–629. [Google Scholar] [CrossRef]
- Neh, K.; Ullmann, M.; Kawalla, R. Twin-roll-casting and hot rolling of magnesium alloy WE43. Procedia Eng. 2014, 81, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.B.; Zheng, M.Y.; Chang, H.; Hu, X.S.; Wu, K.; Xu, S.W.; Kamado, S.; Kojima, Y. Microstructure and mechanical properties of Mg–Zn–Ca alloy processed by equal channel angular pressing. Mater. Sci. Eng. A 2009, 523, 289–294. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Idris, M.H.; Abdul-Kadir, M.R.; Ourdjini, A.; Medraj, M.; Daroonparvar, M.; Hamzah, E. Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys. Mater. Des. 2014, 53, 283–292. [Google Scholar] [CrossRef]
- Radha, R.; Sreekanth, D. Insight of magnesium alloys and composites for orthopedic implant applications—A review. J. Magnes. Alloy. 2017, 5, 286–312. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, X.; Zhao, C.; Li, J.; Song, Y.; Xie, C.; Tao, H.; Zhang, Y.; He, Y.; Jiang, Y.; et al. Research on an Mg-Zn Alloy as a degradable biomaterial. Acta Biomater. 2010, 6, 626–640. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Bian, M.Z.; Xu, S.W.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Effects of dilute additions of Zn and Ca on ductility of magnesium alloy sheet. Mater. Sci. Eng. A 2016, 674, 459–471. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, Y.; Cheng, Y.; Zhong, S.; Xi, T. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 2009, 30, 484–498. [Google Scholar] [CrossRef]
- Feyerabend, F. In vitro analysis of magnesium corrosion in orthopaedic biomaterials. In Biomaterials for Bone Regeneration; Woodhead Publishing: Sawston, UK, 2014; pp. 225–269. [Google Scholar]
- Seitz, J.-M.; Durisin, M.; Goldman, J.; Drelich, J.W. Recent advances in biodegradable metals for medical sutures: A Critical review. Adv. Healthc. Mater. 2015, 4, 1915–1936. [Google Scholar] [CrossRef]
- Li, Z.; Gu, X.; Lou, S.; Zheng, Y. The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 2008, 29, 1329–1344. [Google Scholar] [CrossRef]
- Gu, X.-N.; Zheng, Y.-F. A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 2010, 4, 111–115. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, M.H.; Hu, W.Y.; Hodgson, P.D.; Wen, C.E. Biodegradable Mg-Ca and Mg-Ca-Y alloys for regenerative medicine. Mater. Sci. Forum 2010, 654–656, 2192–2195. [Google Scholar] [CrossRef]
- Bian, D.; Zhou, W.; Liu, Y.; Li, N.; Zheng, Y.; Sun, Z. Fatigue behaviors of HP-Mg, Mg–Ca and Mg–Zn–Ca biodegradable metals in air and simulated body fluid. Acta Biomater. 2016, 41, 351–360. [Google Scholar] [CrossRef]
- López, H.Y.; Cortés-Hernández, D.A.; Escobedo, S.; Mantovani, D. In vitro bioactivity assessment of metallic magnesium. Key Eng. Mater. 2006, 309, 453–456. [Google Scholar] [CrossRef]
- Du, Y.Z.; Qiao, X.G.; Zheng, M.Y.; Wang, D.B.; Wu, K.; Golovin, I.S. Effect of microalloying with Ca on the microstructure and mechanical properties of Mg-6 Mass%Zn alloys. Mater. Des. 2016, 98, 285–293. [Google Scholar] [CrossRef]
- Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A.M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. High-strength low-alloy (HSLA) Mg-Zn-Ca alloys with excellent biodegradation performance. JOM 2014, 66, 566–572. [Google Scholar] [CrossRef]
- Hofstetter, J.; Rüedi, S.; Baumgartner, I.; Kilian, H.; Mingler, B.; Povoden-Karadeniz, E.; Pogatscher, S.; Uggowitzer, P.J.; Löffler, J.F. Processing and microstructure–property relations of high-strength low-alloy (HSLA) Mg–Zn–Ca alloys. Acta Mater. 2015, 98, 423–432. [Google Scholar] [CrossRef]
- Hamdy, I.N.; Shayesteh, M.; Mohammad, E. Mechanical and In Vitro Corrosion Properties of a Heat-Treated Mg-Zn-Ca-Mn Alloy as a Potential Bioresorbable Material. Adv. Metall. Mater. Eng. 2017, 1, 1–7. [Google Scholar] [CrossRef]
- Jiang, M.G.; Xu, C.; Nakata, T.; Yan, H.; Chen, R.S.; Kamado, S. Development of dilute Mg–Zn–Ca–Mn Alloy with high performance via extrusion. J. Alloys Compd. 2016, 668, 13–21. [Google Scholar] [CrossRef]
- Bazhenov, V.; Koltygin, A.; Komissarov, A.; Li, A.; Bautin, V.; Khasenova, R.; Anishchenko, A.; Seferyan, A.; Komissarova, J.; Estrin, Y. Gallium-containing magnesium alloy for potential use as temporary implants in osteosynthesis. J. Magnes. Alloy. 2020, 8, 352–363. [Google Scholar] [CrossRef]
- Somekawa, H.; Mukai, T. High strength and fracture toughness balance on the extruded Mg–Ca–Zn alloy. Mater. Sci. Eng. A 2007, 459, 366–370. [Google Scholar] [CrossRef]
- Du, Y.Z.; Zheng, M.Y.; Xu, C.; Qiao, X.G.; Wu, K.; Liu, X.D.; Wang, G.J.; Lv, X.Y. Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50Zn-1.13Ca (Wt%) alloys. Mater. Sci. Eng. A 2013, 576, 6–13. [Google Scholar] [CrossRef]
- Du, Y.Z.; Zheng, M.Y.; Qiao, X.G.; Wu, K.; Liu, X.D.; Wang, G.J.; Lv, X.Y.; Li, M.J.; Liu, X.L.; Wang, Z.J.; et al. The effect of double extrusion on the microstructure and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A 2013, 583, 69–77. [Google Scholar] [CrossRef]
- Maier, P.; Peters, R.; Mendis, C.L.; Müller, S.; Hort, N. Influence of precipitation hardening in Mg-Y-Nd on mechanical and corrosion properties. JOM 2016, 68, 1183–1190. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Geng, L.; Lu, C. Effects of calcium on texture and mechanical properties of hot-extruded Mg–Zn–Ca alloys. Mater. Sci. Eng. A 2012, 539, 56–60. [Google Scholar] [CrossRef]
- Martynenko, N.S.; Anisimova, N.Y.; Rybalchenko, O.V.; Kiselevskiy, M.V.; Rybalchenko, G.; Straumal, B.; Temralieva, D.; Mansharipova, A.T.; Kabiyeva, A.O.; Gabdullin, M.T.; et al. Rationale for processing of a Mg-Zn-Ca alloy by equal-channel angular pressing for use in biodegradable implants for osteoreconstruction. Crystals 2021, 11, 1381. [Google Scholar] [CrossRef]
- Khudododova, G.D.; Kulyasova, O.B.; Islamgaliev, R.K.; Valiev, R.Z. Microstructure and mechanical properties of the Mg–Zn–Ca biodegradable alloy after severe plastic deformation. IOP Conf. Ser. Mater. Sci. Eng. 2019, 672, 012030. [Google Scholar] [CrossRef]
- Zhang, B.P.; Geng, L.; Huang, L.J.; Zhang, X.X.; Dong, C.C. Enhanced mechanical properties in fine-grained Mg–1.0Zn–0.5Ca alloys prepared by extrusion at different temperatures. Scr. Mater. 2010, 63, 1024–1027. [Google Scholar] [CrossRef]
- Kim, D.-W.; Suh, B.-C.; Shim, M.-S.; Bae, J.H.; Kim, D.H.; Kim, N.J. Texture evolution in Mg-Zn-Ca alloy sheets. Metall. Mater. Trans. A 2013, 44, 2950–2961. [Google Scholar] [CrossRef]
- Tong, L.B.; Zheng, M.Y.; Xu, S.W.; Kamado, S.; Du, Y.Z.; Hu, X.S.; Wu, K.; Gan, W.M.; Brokmeier, H.G.; Wang, G.J.; et al. Effect of Mn addition on microstructure, texture and mechanical properties of Mg–Zn–Ca alloy. Mater. Sci. Eng. A 2011, 528, 3741–3747. [Google Scholar] [CrossRef]
- Homma, T.; Hinata, J.; Kamado, S. Development of an extruded Mg–Zn–Ca-Based alloy: New Insight on the role of mn addition in precipitation. Philos. Mag. 2012, 92, 1569–1582. [Google Scholar] [CrossRef]
- Gunde, P.; Hänzi, A.C.; Sologubenko, A.S.; Uggowitzer, P.J. High-strength magnesium alloys for degradable implant applications. Mater. Sci. Eng. A 2011, 528, 1047–1054. [Google Scholar] [CrossRef]
- Xu, S.W.; Oh-ishi, K.; Sunohara, H.; Kamado, S. Extruded Mg–Zn–Ca–Mn alloys with low yield anisotropy. Mater. Sci. Eng. A 2012, 558, 356–365. [Google Scholar] [CrossRef]
- Ferrando, W.A. Review of corrosion and corrosion control of magnesium alloys and composites. J. Mater. Eng. 1989, 11, 299–313. [Google Scholar] [CrossRef]
- Kirkland, N.T.; Birbilis, N.; Staiger, M.P. Assessing the corrosion of biodegradable magnesium implants: A Critical review of current methodologies and their limitations. Acta Biomater. 2012, 8, 925–936. [Google Scholar] [CrossRef]
- Atrens, A.; Liu, M.; Zainal Abidin, N.I. Corrosion mechanism applicable to biodegradable magnesium implants. Mater. Sci. Eng. B 2011, 176, 1609–1636. [Google Scholar] [CrossRef]
- Atrens, A.; Shi, Z.; Mehreen, S.U.; Johnston, S.; Song, G.L.; Chen, X.; Pan, F. Review of Mg alloy corrosion rates. J. Magnes. Alloy. 2020, 8, 989–998. [Google Scholar] [CrossRef]
- Atrens, A.; Song, G.-L.; Cao, F.; Shi, Z.; Bowen, P.K. Advances in Mg corrosion and research suggestions. J. Magnes. Alloy. 2013, 1, 177–200. [Google Scholar] [CrossRef]
- Brooks, E.; Ehrensberger, M. Bio-corrosion of magnesium alloys for orthopaedic applications. J. Funct. Biomater. 2017, 8, 38. [Google Scholar] [CrossRef]
- Cao, F.; Song, G.-L.; Atrens, A. Corrosion and passivation of magnesium alloys. Corros. Sci. 2016, 111, 835–845. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, C.; Hodgson, P.; Li, Y. Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: A review. J. Mater. Chem. B 2014, 2, 1912–1933. [Google Scholar] [CrossRef] [PubMed]
- Zainal Abidin, N.I.; Rolfe, B.; Owen, H.; Malisano, J.; Martin, D.; Hofstetter, J.; Uggowitzer, P.J.; Atrens, A. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros. Sci. 2013, 75, 354–366. [Google Scholar] [CrossRef]
- Mena-Morcillo, E.; Veleva, L. Degradation of AZ31 and AZ91 magnesium alloys in different physiological media: Effect of surface layer stability on electrochemical behaviour. J. Magnes. Alloy. 2020, 8, 667–675. [Google Scholar] [CrossRef]
- Liu, J.; Bian, D.; Zheng, Y.; Chu, X.; Lin, Y.; Wang, M.; Lin, Z.; Li, M.; Zhang, Y.; Guan, S. Comparative in vitro study on binary Mg-RE (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) alloy systems. Acta Biomater. 2020, 102, 508–528. [Google Scholar] [CrossRef] [PubMed]
- Myagkikh, P.N.; Merson, E.D.; Poluyanov, V.A.; Merson, D.L. Structure effect on the kinetics and staging of the corrosion process of biodegradable ZX10 and WZ31 magnesium alloys. Front. Mater. Technol. 2022, 2, 63–73. [Google Scholar] [CrossRef]
- Zhang, B.; Hou, Y.; Wang, X.; Wang, Y.; Geng, L. Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions. Mater. Sci. Eng. C 2011, 31, 1667–1673. [Google Scholar] [CrossRef]
- Li, H.X.; Qin, S.K.; Yang, C.L.; Ma, Y.Z.; Wang, J.; Liu, Y.J.; Zhang, J.S. Influence of Ca Addition on microstructure, mechanical properties and corrosion behavior of Mg-2Zn alloy. China Foundry 2018, 15, 363–371. [Google Scholar] [CrossRef]
- Bazhenov, V.E.; Li, A.V.; Komissarov, A.A.; Koltygin, A.V.; Tavolzhanskii, S.A.; Bautin, V.A.; Voropaeva, O.O.; Mukhametshina, A.M.; Tokar, A.A. Microstructure and mechanical and corrosion properties of hot-extruded Mg–Zn–Ca–(Mn) biodegradable alloys. J. Magnes. Alloy. 2021, 9, 1428–1442. [Google Scholar] [CrossRef]
- Roh, H.J.; Park, J.; Lee, S.H.; Kim, D.H.; Lee, G.C.; Jeon, H.; Chae, M.; Lee, K.S.; Sun, J.Y.; Lee, D.H.; et al. Optimization of the clinically approved Mg-Zn alloy system through the addition of Ca. Biomater. Res. 2022, 26, 1–16. [Google Scholar] [CrossRef]
- Pulido-González, N.; Torres, B.; Rodrigo, P.; Hort, N.; Rams, J. Microstructural, mechanical and corrosion characterization of an as-Cast Mg–3Zn–0.4Ca alloy for biomedical applications. J. Magnes. Alloy. 2020, 8, 510–522. [Google Scholar] [CrossRef]
- Cho, D.H.; Avey, T.; Nam, K.H.; Dean, D.; Luo, A.A. In vitro and in vivo assessment of squeeze-cast Mg-Zn-Ca-Mn alloys for biomedical applications. Acta Biomater. 2022, 150, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Aditya Kudva, S.; Anne, G.; Manne, B.; Arya, S. Optimization of ball-burnishing process parameters on surface roughness, micro hardness of Mg-Zn-Ca alloy and investigation of corrosion behavior. Mater. Res. Express 2019, 6, 1065e8. [Google Scholar] [CrossRef]
- Bakhsheshi-Rad, H.R.; Hamzah, E.; Fereidouni-Lotfabadi, A.; Daroonparvar, M.; Yajid, M.A.M.; Mezbahul-Islam, M.; Kasiri-Asgarani, M.; Medraj, M. Microstructure and bio-corrosion behavior of Mg-Zn and Mg-Zn-Ca alloys for biomedical applications. Mater. Corros. 2014, 65, 1178–1187. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Huang, Q.; Li, Y.; Hao, X.; Wang, C.; Yang, Y. The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-XCa alloys. J. Magnes. Alloy. 2022. [Google Scholar] [CrossRef]
- Martynenko, N.; Anisimova, N.; Kiselevskiy, M.; Tabachkova, N.; Temralieva, D.; Prosvirnin, D.; Terentiev, V.; Koltygin, A.; Belov, V.; Morosov, M.; et al. Structure, mechanical characteristics, biodegradation, and in vitro cytotoxicity of magnesium alloy ZX11 processed by rotary swaging. J. Magnes. Alloy. 2020, 8, 1038–1046. [Google Scholar] [CrossRef]
- Myagkikh, P.N.; Merson, E.D.; Poluyanov, V.A.; Merson, D.L.; Begun, M.E. On the compatibility of surgical implants of bioresorbable magnesium alloys with medical devices of titanium alloys. Front. Mater. Technol. 2022, 106–114. [Google Scholar] [CrossRef]
- Merson, D.; Brilevsky, A.; Myagkikh, P.; Tarkova, A.; Prokhorikhin, A.; Kretov, E.; Frolova, T.; Vinogradov, A. The functional properties of Mg-Zn-X biodegradable magnesium alloys. Materials 2020, 13, 544. [Google Scholar] [CrossRef]
- Brar, H.S.; Wong, J.; Manuel, M.V. Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials. J. Mech. Behav. Biomed. Mater. 2012, 7, 87–95. [Google Scholar] [CrossRef]
- Khalifeh, S.; Burleigh, T.D. Influence of heat treatment on the corrosion behavior of purified magnesium and AZ31 alloy. arXiv 2017, arXiv:1706.08663. [Google Scholar] [CrossRef]
- Jin, Y.; Blawert, C.; Yang, H.; Wiese, B.; Feyerabend, F.; Bohlen, J.; Mei, D.; Deng, M.; Campos, M.S.; Scharnagl, N.; et al. Microstructure-corrosion behaviour relationship of micro-alloyed Mg-0.5Zn alloy with the addition of Ca, Sr, Ag, In and Cu. Mater. Des. 2020, 195, 108980. [Google Scholar] [CrossRef]
- Rosalbino, F.; De Negri, S.; Saccone, A.; Angelini, E.; Delfino, S. Bio-corrosion characterization of Mg-Zn-X (X = Ca, Mn, Si) alloys for biomedical applications. J. Mater. Sci. Mater. Med. 2010, 21, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Guan, S.K.; Wang, X.; Ren, C.X.; Wang, L.G. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater. 2010, 6, 1743–1748. [Google Scholar] [CrossRef] [PubMed]
- Hattab, M.; Ben Hassen, S.; Cecilia-Buenestado, J.A.; Rodríguez-Castellón, E.; Ben Amor, Y. Comparative electrochemical study of pure magnesium behavior in Ringer’s and Hank’s solutions. Prot. Met. Phys. Chem. Surfaces 2021, 57, 168–180. [Google Scholar] [CrossRef]
- Merson, E.D.; Poluyanov, V.A.; Myagkikh, P.N.; Merson, D.L.; Vinogradov, A.Y. The effect of testing conditions on stress corrosion cracking of biodegradable magnesium alloy ZK60. Lett. Mater. 2022, 12, 177–183. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Gonzalez, J.; Mei, D.; Feyerabend, F.; Willumeit-Römer, R.; Zheludkevich, M.L. Local PH and its evolution near Mg alloy surfaces exposed to simulated body fluids. Adv. Mater. Interfaces 2018, 5, 1800169. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, J.; Yang, H.; Liu, S.; He, X.; Wang, Z. Influence of Gd and Ca on microstructure, mechanical and corrosion properties of Mg–Gd–Zn(–Ca) alloys. Mater. Technol. 2017, 32, 399–408. [Google Scholar] [CrossRef]
- Bornapour, M.; Mahjoubi, H.; Vali, H.; Shum-Tim, D.; Cerruti, M.; Pekguleryuz, M. Surface characterization, in vitro and in vivo biocompatibility of Mg-0.3Sr-0.3Ca for temporary cardiovascular implant. Mater. Sci. Eng. C 2016, 67, 72–84. [Google Scholar] [CrossRef]
- Xin, Y.; Hu, T.; Chu, P.K. Degradation behaviour of pure magnesium in simulated body fluids with different concentrations of HCO3−. Corros. Sci. 2011, 53, 1522–1528. [Google Scholar] [CrossRef]
- Li, K.K.; Wang, B.; Yan, B.; Lu, W. Preparing Ca-P Coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior. Chinese Sci. Bull. 2012, 57, 2319–2322. [Google Scholar] [CrossRef]
- Myagkikh, P.N.; Merson, E.D.; Poluyanov, V.A.; Merson, D.L. In-Situ Study of the corrosion process of biodegradable magnesium alloys. Front. Mater. Technol. 2021, 2, 18–25. [Google Scholar] [CrossRef]
- ASTM G1-03; Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International: West Conshohocken, PA, USA, 2011.
- Sun, Y.; Zhang, B.; Wang, Y.; Geng, L.; Jiao, X. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Mater. Des. 2012, 34, 58–64. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Yang, C.L.; Liu, Y.J.; Yuan, F.S.; Liang, S.S.; Li, H.X.; Zhang, J.S. Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg-XZn-0.2Ca alloys. Int. J. Miner. Metall. Mater. 2019, 26, 1274–1284. [Google Scholar] [CrossRef]
- Merson, E.; Poluyanov, V.; Myagkikh, P.; Merson, D.; Vinogradov, A. Inhibiting stress corrosion cracking by removing corrosion products from the Mg-Zn-Zr alloy pre-exposed to corrosion solutions. Acta Mater. 2021, 205, 437–451. [Google Scholar] [CrossRef]
- ASTM G31-72; Standard Practice for Laboratory Immersion Corrosion Testing of Metals. ASTM International: West Conshohocken, PA, USA, 2004.
- Fajardo, S.; Frankel, G.S. Gravimetric method for hydrogen evolution measurements on dissolving magnesium. J. Electrochem. Soc. 2015, 162, C693–C701. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Song, G.; Ghali, E.; Dietzel, W.; Kainer, K.U.; Hort, N.; Blawert, C. A Critical review of the stress corrosion cracking (SCC) of magnesium alloys. Adv. Eng. Mater. 2005, 7, 659–693. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; StJohn, D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In Essential Readings in Magnesium Technology; Springer International Publishing: Cham, Switzerland, 2016; pp. 565–572. [Google Scholar]
- Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Zong, X.; Zhang, J.; Liu, W.; Zhang, Y.; You, Z.; Xu, C. Corrosion behaviors of long-period stacking ordered structure in Mg alloys used in biomaterials: A review. Adv. Eng. Mater. 2018, 20, 1800017. [Google Scholar] [CrossRef]
- McCafferty, E. Validation of corrosion rates measured by the tafel extrapolation method. Corros. Sci. 2005, 47, 3202–3215. [Google Scholar] [CrossRef]
- ASTM G102-89; Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements. ASTM International: West Conshohocken, PA, USA, 2015.
- Song, G.; Atrens, A. Understanding magnesium corrosion—A framework for improved alloy performance. Adv. Eng. Mater. 2003, 5, 837–858. [Google Scholar] [CrossRef]
- Danilov, V.A.; Merson, D.L. Quantitative estimation of the corrosion rate of metallic materials using confocal laser scanning microscopy. Lett. Mater. 2021, 11, 291–297. [Google Scholar] [CrossRef]
- McCall, C.R.; Hill, M.A.; Lillard, R.S. Crystallographic pitting in magnesium single crystals. Corros. Eng. Sci. Technol. 2005, 40, 337–343. [Google Scholar] [CrossRef]
- Shin, K.S.; Bian, M.Z.; Nam, N.D. Effects of crystallographic orientation on corrosion behavior of magnesium single crys. JOM 2012, 64, 664–670. [Google Scholar] [CrossRef]
- Liu, M.; Qiu, D.; Zhao, M.C.; Song, G.; Atrens, A. The effect of crystallographic orientation on the active corrosion of pure magnesium. Scr. Mater. 2008, 58, 421–424. [Google Scholar] [CrossRef]
- Bahl, S.; Suwas, S.; Chatterjee, K. The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Adv. 2014, 4, 55677–55684. [Google Scholar] [CrossRef]
- Gerashi, E.; Alizadeh, R.; Langdon, T.G. Effect of crystallographic texture and twinning on the corrosion behavior of mg alloys: A review. J. Magnes. Alloy. 2022, 10, 313–325. [Google Scholar] [CrossRef]
- Liu, C.; Xin, Y.; Tian, X.; Chu, P.K. Degradation Susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin. J. Mater. Res. 2007, 22, 1806–1814. [Google Scholar] [CrossRef]
- Willumeit, R.; Fischer, J.; Feyerabend, F.; Hort, N.; Bismayer, U.; Heidrich, S.; Mihailova, B. Chemical surface alteration of biodegradable magnesium exposed to corrosion media. Acta Biomater. 2011, 7, 2704–2715. [Google Scholar] [CrossRef]
- Millán-Ramos, B.; Morquecho-Marín, D.; Silva-Bermudez, P.; Ramírez-Ortega, D.; Depablos-Rivera, O.; García-López, J.; Fernández-Lizárraga, M.; Almaguer-Flores, A.; Victoria-Hernández, J.; Letzig, D.; et al. Degradation behavior and mechanical integrity of a Mg-0.7Zn-0.6Ca (Wt.%) alloy: Effect of grain sizes and crystallographic texture. Materials 2022, 15, 3142. [Google Scholar] [CrossRef]
- Parfenov, E.V.; Kulyasova, O.B.; Mukaeva, V.R.; Mingo, B.; Farrakhov, R.G.; Cherneikina, Y.V.; Yerokhin, A.; Zheng, Y.F.; Valiev, R.Z. Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg-1Ca alloy. Corros. Sci. 2020, 163, 108303. [Google Scholar] [CrossRef]
- Cihova, M.; Martinelli, E.; Schmutz, P.; Myrissa, A.; Schäublin, R.; Weinberg, A.M.; Uggowitzer, P.J.; Löffler, J.F. The role of zinc in the biocorrosion behavior of resorbable Mg–Zn–Ca alloys. Acta Biomater. 2019, 100, 398–414. [Google Scholar] [CrossRef]
- Lu, Y.; Bradshaw, A.R.; Chiu, Y.L.; Jones, I.P. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Mater. Sci. Eng. C 2015, 48, 480–486. [Google Scholar] [CrossRef]
- Lambotte, A. L’utilisation du magnesium comme materiel perdu dans l’osteosynth. Bull. Mem. Soc. Nat. Chir. 1932, 28, 1325–1334. [Google Scholar]
- Tian, L.; Sheng, Y.; Huang, L.; Chow, D.H.K.; Chau, W.H.; Tang, N.; Ngai, T.; Wu, C.; Lu, J.; Qin, L. Corrigendum to an innovative Mg/Ti hybrid fixation system developed for fracture fixation and healing enhancement at load-bearing skeletal site. Biomaterials 2018, 181, 307–309. [Google Scholar] [CrossRef]
- Hou, P.; Han, P.; Zhao, C.; Wu, H.; Ni, J.; Zhang, S.; Liu, J.; Zhang, Y.; Xu, H.; Cheng, P.; et al. Accelerating Corrosion of pure magnesium co-implanted with titanium in vivo. Sci. Rep. 2017, 7, 41924. [Google Scholar] [CrossRef]
- Amel-Farzad, H.; Peivandi, M.T.; Yusof-Sani, S.M.R. In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms. Eng. Fail. Anal. 2007, 14, 1205–1217. [Google Scholar] [CrossRef]
- Thapa, N.; Prayson, M.; Goswami, T. A failure study of a locking compression plate implant. Case Stud. Eng. Fail. Anal. 2015, 3, 68–72. [Google Scholar] [CrossRef]
- Bombara, G.; Cavallini, M. Stress corrosion cracking of bone implants. Corros. Sci. 1977, 17, 77–85. [Google Scholar] [CrossRef]
- Lozhkin, V.V.; Zorya, V.I. Results of spectral analysis of extracted broken implants after osteosynthesis of long bones. Genij Ortop. 2018, 24, 375–379. [Google Scholar] [CrossRef]
- Chen, L.; Blawert, C.; Yang, J.; Hou, R.; Wang, X.; Zheludkevich, M.L.; Li, W. The stress corrosion cracking behaviour of biomedical Mg-1Zn alloy in synthetic or natural biological media. Corros. Sci. 2020, 175, 108876. [Google Scholar] [CrossRef]
- Jiang, J.; Xie, Q.; Qiang, M.; Ma, A.; Taylor, E.K.; Li, Y.; Song, D.; Chen, J. Stress corrosion cracking behaviors of RE-containing ME21 magnesium alloy processed by equal-channel angular pressing. J. Rare Earths 2019, 37, 88–94. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Raja, V.S.; Song, G.; Kainer, K.U. Characterisation of stress corrosion cracking (SCC) of Mg—Al alloys. Mater. Sci. Eng. A 2008, 48, 339–351. [Google Scholar] [CrossRef]
- Dubey, D.; Kadali, K.; Panda, S.S.; Kumar, A.; Jain, J.; Mondal, K.; Singh, S.S. Comparative study on the stress corrosion cracking susceptibility of AZ80 and AZ31 magnesium alloys. Mater. Sci. Eng. A 2020, 792, 139793. [Google Scholar] [CrossRef]
- Song, Y.; Liu, Q.; Wang, H.; Zhu, X. Effect of Gd on microstructure and stress corrosion cracking of the AZ91-extruded magnesium alloy. Mater. Corros. 2021, 72, 1189–1200. [Google Scholar] [CrossRef]
- Choudhary, L.; Singh Raman, R.K.; Hofstetter, J.; Uggowitzer, P.J. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications. Mater. Sci. Eng. C 2014, 42, 629–636. [Google Scholar] [CrossRef]
- Jafari, S.; Raman, R.K.S.; Davies, C.H.J.; Hofstetter, J.; Uggowitzer, P.J.; Löffler, J.F. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment. J. Mech. Behav. Biomed. Mater. 2017, 65, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Holweg, P.; Berger, L.; Cihova, M.; Donohue, N.; Clement, B.; Schwarze, U.; Sommer, N.G.; Hohenberger, G.; van den Beucken, J.J.J.P.; Seibert, F.; et al. A lean magnesium–Zinc–Calcium Alloy ZX00 used for bone fracture stabilization in a large growing-animal model. Acta Biomater. 2020, 113, 646–659. [Google Scholar] [CrossRef]
- Horky, J.; Bryła, K.; Krystian, M.; Mozdzen, G.; Mingler, B.; Sajti, L. Improving mechanical properties of lean Mg–Zn–Ca alloy for absorbable implants via double equal channel angular pressing (D-ECAP). Mater. Sci. Eng. A 2021, 826, 142002. [Google Scholar] [CrossRef]
- Peron, M.; Skaret, P.C.; Fabrizi, A.; Varone, A.; Montanari, R.; Roven, H.J.; Ferro, P.; Berto, F.; Torgersen, J. The effect of equal channel angular pressing on the stress corrosion cracking susceptibility of AZ31 alloy in simulated body fluid. J. Mech. Behav. Biomed. Mater. 2020, 106, 103724. [Google Scholar] [CrossRef]
- Chen, L.; Sheng, Y.; Wang, X.; Zhao, X.; Liu, H.; Li, W. Effect of the Microstructure and distribution of the second phase on the stress corrosion cracking of biomedical Mg-Zn-Zr-XSr alloys. Materials 2018, 11, 551. [Google Scholar] [CrossRef]
- Peron, M.; Bertolini, R.; Ghiotti, A.; Torgersen, J.; Bruschi, S.; Berto, F. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining. J. Mech. Behav. Biomed. Mater. 2020, 101, 103429. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Chen, J.; Yan, H.; Xia, W.; Su, B.; Gong, X.; Guo, H. Degradation, stress corrosion cracking behavior and cytocompatibility of high strain rate rolled Mg-Zn-Sr alloys. Mater. Lett. 2020, 260, 126920. [Google Scholar] [CrossRef]
- Gong, X.; Chen, J.; Yan, H.; Xia, W.; Su, B.; Yu, Z.; Yin, H. Effects of minor Sr addition on bio-corrosion and stress corrosion cracking of as-Cast Mg-4Zn alloys. Corrosion 2020, 76, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, D.B.; Nampoothiri, J.; Elakkiya, V.; Narmadha, R.; Selvakumar, R.; Sivasubramanian, R.; Gopalakrishnan, P.; Ravi, K.R. Elucidating the role of microstructural modification on stress corrosion cracking of biodegradable Mg–4Zn alloy in simulated body fluid. Mater. Sci. Eng. C 2020, 106, 110164. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.; Raman, R.K.S.; Davies, C.H.J. Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid. Eng. Fract. Mech. 2018, 201, 47–55. [Google Scholar] [CrossRef]
- Harandi, S.E.; Banerjee, P.C.; Easton, C.D.; Singh Raman, R.K. Influence of bovine serum albumin in hanks’ solution on the corrosion and stress corrosion cracking of a magnesium alloy. Mater. Sci. Eng. C 2017, 80, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Zhang, A.; Zhu, T. Stress corrosion cracking behavior of AZ80 magnesium alloy with different orientations in simulated body fluid. Fatigue Fract. Eng. Mater. Struct. 2022, 46, 471–484. [Google Scholar] [CrossRef]
- Chatterjee, U.K.; Singh Raman, R.K. Stress corrosion cracking (SCC) in low and medium strength carbon steels. In Stress Corrosion Cracking; Woodhead Publishing: Sawston, UK, 2011; pp. 169–198. [Google Scholar]
- Kain, V. Stress corrosion cracking (SCC) in stainless steels. In Stress Corrosion Cracking; Woodhead Publishing: Sawston, UK, 2011; pp. 199–244. [Google Scholar]
- Rebak, R.B. Stress corrosion cracking (SCC) of nickel-based alloys. In Stress Corrosion Cracking; Woodhead Publishing: Sawston, UK, 2011; pp. 273–306. [Google Scholar]
- Yu, L.; Zhao, Z.; Tang, C.; Li, W.; You, C.; Chen, M. The mechanical and corrosion resistance of Mg-Zn-Ca-Ag alloys: The influence of Ag content. J. Mater. Res. Technol. 2020, 9, 10863–10875. [Google Scholar] [CrossRef]
- Denk, J.; Dallmeier, J.; Huber, O.; Saage, H. The fatigue life of notched magnesium sheet metals with emphasis on the effect of bands of twinned grains. Int. J. Fatigue 2017, 98, 212–222. [Google Scholar] [CrossRef]
- Proverbio, E.; Bonaccorsi, L.M. Microstructural analysis of failure of a stainless steel bone plate implant. Pract. Fail. Anal. 2001, 1, 33–38. [Google Scholar] [CrossRef]
- Antunes, R.A.A.; de Oliveira, M.C.L.C.L. Corrosion fatigue of biomedical metallic alloys: Mechanisms and mitigation. Acta Biomater. 2012, 8, 937–962. [Google Scholar] [CrossRef]
- Raman, R.K.S.; Harandi, S.E. Resistance of magnesium alloys to corrosion fatigue for biodegradable implant applications: Current status and challenges. Materials 2017, 10, 1316. [Google Scholar] [CrossRef]
- Peron, M.; Torgersen, J.; Berto, F. Mg and its alloys for biomedical applications: Exploring corrosion and its interplay with mechanical failure. Metals 2017, 7, 252. [Google Scholar] [CrossRef]
- Bhuiyan, M.; Mutoh, Y.; Murai, T.; Iwakami, S. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments. Int. J. Fatigue 2008, 30, 1756–1765. [Google Scholar] [CrossRef]
- Linderov, M.; Vasilev, E.; Merson, D.; Markushev, M.; Vinogradov, A. Corrosion fatigue of fine grain Mg-Zn-Zr and Mg-Y-Zn alloys. Metals 2018, 8, 20. [Google Scholar] [CrossRef]
- Linderov, M.; Brilevsky, A.; Merson, D.; Danyuk, A.; Vinogradov, A. On the Corrosion fatigue of magnesium alloys aimed at biomedical applications: New insights from the influence of testing frequency and surface modification of the alloy ZK60. Materials 2022, 15, 567. [Google Scholar] [CrossRef]
- Nugmanov, D.R.; Sitdikov, O.S.; Markushev, M.V. Microstructure evolution in MA14 magnesium alloy under multi-step isothermal forging. Lett. Mater. 2011, 1, 213–216. [Google Scholar] [CrossRef]
- Vasilev, E.; Linderov, M.; Nugmanov, D.; Sitdikov, O.; Markushev, M.; Vinogradov, A. Fatigue performance of Mg-Zn-Zr alloy processed by hot severe plastic deformation. Metals 2015, 5, 2316–2327. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Zhu, S.; Zhang, Y.; Sun, Y.; Wang, L.; Guan, S. Corrosion fatigue of the extruded Mg–Zn–Y–Nd alloy in simulated body fluid. J. Magnes. Alloy. 2020, 8, 231–240. [Google Scholar] [CrossRef]
- Linderov, M.L.; Afanasyev, M.A.; Asmolov, A.N.; Danilov, V.A.; Merson, D.L. Regulation of corrosion damage of magnesium alloys through the use of vacuum zirconium coatings. Lett. Mater. 2021, 11, 357–362. [Google Scholar] [CrossRef]
Material | Density g/cm3 | Young’s Modulus/GPa | 0.2% Yield Strength /MPa | Ultimate Tensile Strength /MPa | Specific Strength /MPa·cm3/g | Tensile Elongation at Break (%) | Fatigue Strength *** /MPa | Reference |
---|---|---|---|---|---|---|---|---|
Cortical bone | 1.6–2.0 | 15–31 | 31–71 | 72–151 | - | - | - | [9] |
αFe | 7.87 | 211 | 150 | 240 | 44.5 | 49 | 130 | [10] |
316LVM (Medical Grade) | 8.0 | 188 | 405 | 515 | 64 | 68 | 400 | [11,12,13] |
CP Ti (Grade 2) | 4.5 | 103 | 275 | 345 | 76 | 20 | 300 | [12,13,14] |
CP Ti (Grade 4) | 4.5 | 105 | 485 | 550 | 122 | 15 | 425 | [12,13,14] |
Ti-6Al-4V ELI (α + β) | 4.43 | 114 | 770 | 840 | 190 | 15 | 427 | [12,13,14,15] |
Ti-12Mo-6Zr-2Fe (β) | 5.0 | 74 | 895 | 930 | 186 | 15 | 730 | [16] |
CoCr (Wirobond® C) * | 8.5 | 180 | 440 | 780 | 92 | 16 | - | manufacturer |
CoCr (L605) ** | 9.27 | 242 | 424 | 1021 | 110 | 12 | 343 | manufacturer |
Mg | 1.74 | 44 | 21 | 90 | 52 | 2–6 | 28 | [17] |
Mg-1Zn-2Y (at.%) (LPSO) | 1.84 | 45 | 610 | - | 332 | 5 | - | [18] |
Mg–8Gd–3Y–0.4Zr (wt.%) | <2 | 43 | 650 | 710 | 355 | 4.5 | - | [19] |
Mg-4Zn-0.15Ca (wt.%) | <2 | 45 | 348 | 381 | 190 | 5 | 120 | [20,21] |
Composition | Alloy | Manufacturing Features | Grain Size (μm) | Measuring Method | pH-Level/Adjustment Method | Duration (for Immersion Tests) | Corrosion Rate (mm/year) | Ref. |
---|---|---|---|---|---|---|---|---|
Mg-Al-Zn | AZ91 | As-cast | - | Hydrogen evolution | 7.0/bubbling CO2 | 283 h | 6.8 | [141] |
168 h | 3.8 ± 1.5 | |||||||
Weight loss | 168 h | 6.2 ± 2 | ||||||
- | - | Weight loss | 7.3/solution replacing (every 8 h) | 168 h | 0.61 ± 0.017 | [142] | ||
PDP | - | 0.072 ± 0.005 | ||||||
AZ31 | - | - | Weight loss | 168 h | 0.84 ± 0.025 | |||
PDP | - | 0.077 ± 0.005 | ||||||
Mg-Y | 1Y | Extrusion | 3.4 | Weight loss | ≤8.9/without adjustment | 72 h | 0.25 ± 0.05 | [143] |
≤10.15/without correction | 360 h | 0.3 ± 0.1 | ||||||
3Y | 10 | ≤9.65/without correction | 72 h | 0.85 ± 0.1 | ||||
≤10.5/without correction | 360 h | 1.95 ± 0.25 | ||||||
Mg-Y-Zn | WZ21 | Extrusion | - | Weight loss | 7.0/bubbling CO2 | 336 h | 2.7 | [141] |
168 h | 0.46 ± 0.11 | |||||||
- | Hydrogen evolution | 0.23 ± 0.22 | ||||||
WZ31 | As-cast | 150 | Hydrogen evolution | 7.2–7.8/solution replacing (auto) | 168 h | 1.86 | [144] | |
Weight loss | 8.65 | |||||||
Multiaxial isothermal forging + pressing | 3 | Hydrogen evolution | 2.10 | |||||
Weight loss | 2.47 | |||||||
Mg-Zn-Ga | 4Zn4Ga | Equal channel angular pressing | 90/10 | Hydrogen evolution | 7.3–6.3/without correction | 192 h | 0.16 ± 0.06 | [119] |
PDP | - | - | 1.55 ± 0.1 | |||||
4Zn4Ga 0.2Ca | 10 | Hydrogen evolution | 7.3–6.3/without adjustment | 192 h | 0.37 ± 0.07 | |||
PDP | - | - | 2.48 ± 0.05 | |||||
4Zn4Ga 0.3Y | Equal channel angular pressing | 10 | Hydrogen evolution | 7.3–6.3/without adjustment | 192 h | 0.22 ± 0.07 | ||
PDP | - | - | 1.75 ± 0.05 | |||||
4Zn4Ga 0.3Nd | Equal channel angular pressing | 10 | Hydrogen evolution | 7.3–6.3/without adjustment | 192 h | 0.30 ± 0.07 | ||
PDP | - | - | 1.72 ± 0.05 | |||||
Mg-Zn-Ca (include Mg-Zn and Mg-Ca) | ZX10 | As-cast | 400 | Hydrogen evolution | 7.2–7.8/solution replacing (auto) | 168 h | 4.08 ± 2.3 | [144] |
Weight loss | 5.56 ± 2.5 | |||||||
Multiaxial isothermal forging + pressing | 4 | Hydrogen evolution | 2.5 ± 0.32 | |||||
Weight loss | 3.7 ± 0.86 | |||||||
0Zn1Ca | As-cast | ~200 | Weight loss | 7.2–7.4/HCl + NaOH | 720 h | 3.16 ± 0.5 | [145] | |
1Zn1Ca | ~300 | 2.13 ± 0.2 | ||||||
2Zn1Ca | ~100 | 2.38 ± 0.3 | ||||||
3Zn1Ca | ~100 | 2.92 ± 0.5 | ||||||
4Zn1Ca | ~100 | 4.42 ± 1 | ||||||
5Zn1Ca | ~100 | 6.15 ± 1.5 | ||||||
6Zn1Ca | ~100 | 9.21 ± 1.5 | ||||||
2Zn0Ca | As-cast | 388 | Weight loss | 7.4/H3PO4 | 168 h | 0.3 | [146] | |
2Zn0.2Ca | ~250 | 0.37 | ||||||
2Zn0.4Ca | ~200 | 0.6 | ||||||
2Zn0.8Ca | 175 | 1.76 | ||||||
2Zn0.7Ca | Extrusion (220 °C) | ~3.6 | Hydrogen evolution | ≤9/without adjustment | 192 h | 0.55 ± 0.3 | [147] | |
PDP | - | - | 2.3 ± 0.3 | |||||
Extrusion (300 °C) | ~6.6 | Hydrogen evolution | ≤9/without adjustment | 192 h | 0.3 ± 0.25 | |||
PDP | - | - | 2.55 ± 0.05 | |||||
4Zn0.7Ca | Extrusion (220 °C) | ~4.3 | Hydrogen evolution | ≤9/without adjustment | 192 h | 0.96 ± 0.12 | ||
PDP | - | - | 1.92 ± 0.4 | |||||
Extrusion (300 °C) | ~7.2 | Hydrogen evolution | ≤9/without adjustment | 192 h | 1.2 ± 0.3 | |||
PDP | - | - | 1.8 ± 0.8 | |||||
2Zn | Extrusion | 24.8 | Hydrogen evolution | 7.4/without adjustment | 168 h | 0.064 | [148] | |
PDP | - | - | 0.1 | |||||
2Zn0.1Ca | 6.5 | Hydrogen evolution | 7.4/without adjustment | 168 h | 0.095 | |||
PDP | - | - | 0.11 | |||||
2Zn0.3Ca | 1.1 | Hydrogen evolution | 7.4/without adjustment | 168 h | 0.172 | |||
PDP | - | 0.39 | ||||||
3Zn0.4Ca | As-cast | - | Hydrogen evolution | 7.4/bubbling CO2 | 0–130 h | 1.04 | [149] | |
130–336 h | 3.88 | |||||||
4Zn0.5Ca | Squeeze cast | 86.8 | Weight loss | - | 72 h | 1.2 ± 0.4 | [150] | |
144 h | 2.3 ± 0.1 | |||||||
216 h | 2.9 ± 0.3 | |||||||
PDP | - | - | 0.326 ± 0.143 | |||||
4Zn1Ca | Homogenization treatment | 197 | PDP | - | - | 6.73 | [151] |
Alloy | Corrosion Media | Manufacturing Features | Grain Size (μm) | Remarks | Measuring Method | pH-Level/Adjustment Method | Duration (for Immersion Tests) | Corrosion Rate (mm/year) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Mg-1.25Zn-0.8Ca | Kokubo solution | As-cast | - | - | Weight loss | ≤9.8/without adjustment | 144 h | 1.62 | [152] |
PDP | - | - | 4.12 | ||||||
Mg-2.5Zn-0.8Ca | - | - | Weight loss | ≤9.3/without adjustment | 144 h | 2.9 | |||
PDP | - | - | 5.07 | ||||||
Mg-4Zn-0.8Ca | - | - | Weight loss | ≤10/without adjustment | 144 h | 4.13 | |||
PDP | - | - | 7.26 | ||||||
Mg-3Zn-0.2Ca | 0.9% wt. NaCl | As-cast (quenching in water) | - | - | Hydrogen evolution | - | 48 h | 3.06 ± 0.14 | [153] |
Weight loss | 4.86 ± 0.25 | ||||||||
PDP | - | 0.34 ± 0.01 | |||||||
Mg-3Zn-0.5Ca | - | - | Hydrogen evolution | - | 48 h | 3.2 ± 0.23 | |||
Weight loss | 5.11 ± 0.33 | ||||||||
PDP | - | 0.38 ± 0.04 | |||||||
Mg-3Zn-0.8Ca | - | - | Hydrogen evolution | - | 48 h | 4.84 ± 0.21 | |||
Weight loss | 7.43 ± 0.65 | ||||||||
PDP | - | 0.51 ± 0.07 | |||||||
ZX11 | FBS | As-cast | 54.1 | Weight loss | ≤8/daily replacing | 24 h | 0.22 ± 0.01 | [154] | |
72h | 0.22 ± 0.07 | ||||||||
336 h | 0.29 ± 0.09 | ||||||||
Rotary swaging | 4.5/4.8 | - | 24 h | 0.28 ± 0.01 | |||||
72h | 0.22 ± 0.01 | ||||||||
336 h | 0.44 ± 0.09 | ||||||||
Mg-1Zn-0.2Ca | Ringer’s solution | As-cast | 185 | - | Hydrogen evolution | 7.4/H3PO4 | 168 h | 8.5 ± 1.3 | [96] |
Weight loss | 7.6 ± 0.7 | ||||||||
Multiaxial isothermal forging | 2.9 | Hydrogen evolution | 1.1 ± 0.24 | ||||||
Weight loss | 1.8 ± 0.5 | ||||||||
Multiaxial isothermal forging + rolling | 2.2 | Hydrogen evolution | 1.3 ± 0.26 | ||||||
Weight loss | 1.7 ± 0.3 | ||||||||
Extrusion | 36/5.2 | Bimodal Structure (Large grains/Small grains) | Hydrogen evolution | 3.2 ± 0.5 | |||||
Weight loss | 1.6 ± 0.4 | ||||||||
ZX10 | 0.9% wt. NaCl | Multiaxial isothermal forging + pressing | 4 | - | Hydrogen evolution | 7.6 max/without adjustment | 168 h | 1.75 ± 0.1 | [155] |
Weight loss | 3 ± 0.25 | ||||||||
ZX10 | Ringer’s solution | Extrusion | 2.1 | Hydrogen evolution | 7.4 ± 0.4/H3PO4 | 168 h | 3.2 | [156] |
Alloy | Manufacturing Features | Grain Size, d/µm | Ultimate Tensile Strength, σUTS/MPa | Elongation to Failure, εf, % | IEFSCC, % | IUTSSCC, % | Strain Rate, s−1 | Corrosion Solution | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Air | SBF | Air | SBF | ||||||||
WZ21 | Extrusion | 7 | 243 | 166 | 28.1 | 7.7 | 73 | 32 | 3 × 10−7 | m-SBF | [207] |
ZX50 | 4 | 353 | 257 | 21.2 | 3.8 | 82 | 27 | ||||
WE43 | 15 | 263 | 211 | 16.9 | 8 | 53 | 20 | ||||
AZ31 | Dry machining | 24 | 256 | 233 | 24.5 | 6.1 | 75 | 9 | 3.5 × 10−6 | SBF | [213] |
Cryo machining | 24 | 253 | 235 | 24.2 | 7.8 | 68 | 7 | ||||
Mg-4Zn | High-strain rate rolling | 4 | 261 | 180 | 36.3 | 5.2 | 86 | 31 | 6.7 × 10−7 | Hanks | [214] |
Mg-4Zn-0.1Sr | 3.6 | 263 | 190 | 34.9 | 5.4 | 85 | 28 | ||||
Mg-4Zn-0.2Sr | 3.3 | 268 | 195 | 33.5 | 7.2 | 79 | 27 | ||||
AZ31 | As-received | 27.5 | 213 | 182 | 14.2 | 6.5 | 54 | 15 | 3.5 × 10−6 | SBF | [211] |
Equal channel angular pressing, one pass | 8.3 | 229 | 218 | 22.8 | 16.2 | 29 | 5 | ||||
Equal channel angular pressing, two passes | 6.8 | 229 | 210 | 36 | 15.5 | 57 | 8 | ||||
Equal channel angular pressing, four passes | 6.5 | 227 | 183 | 46.8 | 14.9 | 68 | 19 | ||||
Mg-1Zn | Wrought | 17 | 285 | 226 | 17.9 | 6.7 | 63 | 21 | 1 × 10−6 | PBS | [202] |
231 | 7.4 | 59 | 19 | m-SBF | |||||||
229 | 10.4 | 42 | 20 | DMEM | |||||||
237 | 12.3 | 31 | 17 | BCS | |||||||
Mg-4Zn | As-cast | 80 | 172 | 140 | 15.6 | 4.7 | 70 | 19 | 6.7 × 10−7 | Hanks | [215] |
Mg-4Zn-0.1Sr | 45 | 190 | 158 | 19.3 | 8 | 59 | 17 | ||||
Mg-4Zn-0.2Sr | 57 | 185 | 155 | 18.5 | 7.9 | 57 | 16 | ||||
Mg-4Zn-0.4Sr | 62 | 155 | 114 | 12.8 | 6 | 53 | 26 | ||||
Mg-4Zn | As-cast | 482 | 153 | 63 | 13.4 | 3.6 | 73 | 59 | 3.6 × 10−6 | SBF | [216] |
T4 | 398 | 174 | 82 | 16.3 | 4.9 | 70 | 53 | ||||
T6 | 420 | 159 | 87 | 7.9 | 1.9 | 76 | 45 | ||||
ME21 | As-cast | 325 | 128 | 76 | 13.4 | 4.5 | 66 | 41 | 1 × 10−6 | Hanks | [203] |
Equal channel angular pressing | 6 | 177.1 | 145 | 13.5 | 8.5 | 37 | 18 | ||||
ZK40 | Bi-directional forging | 8.2 | 226 | 195 | 15.3 | 7.8 | 49 | 14 | 1 × 10−6 | m-SBF | [212] |
ZK40-0.4Sr | 6.7 | 261 | 224 | 19.6 | 9.5 | 52 | 14 | ||||
ZK40-0.8Sr | 5.7 | 249 | 202 | 14.5 | 5.3 | 63 | 19 | ||||
ZK40-1.2Sr | 3.7 | 234 | 183 | 9.8 | 4.2 | 57 | 22 | ||||
ZK40-1.6Sr | 3.7 | 221 | 171 | 6.6 | 3.2 | 52 | 23 | ||||
ZK21 | Extrusion | 3 | - | - | - | - | 62 | 19 | 3.1 × 10−7 | m-SBF | [217] |
ZX10 | Extrusion 325 C | 1.2 | 247 | 229 | 30.5 | 9 | 64 | 15 | 3.1 × 10−7 | m-SBF | [208] |
Extrusion 400 C | 7 | 213 | 155 | 31 | 8 | 69 | 26 | ||||
AZ91D | As-cast | - | 160 | 135 | 5.4 | 3.3 | 39 | 16 | 3.1 × 10−7 | Hanks | [218] |
160 | 90 | 5.4 | 2.9 | 46 | 44 | Hanks + BSA | |||||
AZ80 | Hot-rolling | 50 | 268 | 160 | 20 | 5.4 | 73 | 40 | 1 × 10−6 | SBF | [219] |
194 | 176 | 13.6 | 4.7 | 65 | 9 | ||||||
274 | 126 | 21.54 | 4.5 | 79 | 54 | 5.3 × 10−7 | |||||
180 | 129 | 11 | 4.6 | 58 | 28 | ||||||
ZK60 | Extrusion | 3 | 284 | 239.5 | 36.4 | 5.9 | 84 | 16 | 5 × 10−6 | 0.9%NaCl | [163] |
284 | 249.5 | 36.4 | 7.485 | 79 | 12 | 5 × 10−6 | Ringer | ||||
284 | 235.5 | 36.4 | 4.675 | 87 | 17 | 5 × 10−6 | Hanks |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinogradov, A.; Merson, E.; Myagkikh, P.; Linderov, M.; Brilevsky, A.; Merson, D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials 2023, 16, 1324. https://doi.org/10.3390/ma16031324
Vinogradov A, Merson E, Myagkikh P, Linderov M, Brilevsky A, Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials. 2023; 16(3):1324. https://doi.org/10.3390/ma16031324
Chicago/Turabian StyleVinogradov, Alexei, Evgeniy Merson, Pavel Myagkikh, Mikhail Linderov, Alexandr Brilevsky, and Dmitry Merson. 2023. "Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System" Materials 16, no. 3: 1324. https://doi.org/10.3390/ma16031324
APA StyleVinogradov, A., Merson, E., Myagkikh, P., Linderov, M., Brilevsky, A., & Merson, D. (2023). Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials, 16(3), 1324. https://doi.org/10.3390/ma16031324