Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films
Abstract
:1. Introduction
2. Experimental Details
2.1. Chemicals and Material Details
2.2. Preparation of Solutions
2.2.1. Phosphotungstic Acid (H3PW12O40)
2.2.2. Lithium Chloride (LiCl)
2.2.3. Rubidium Sulfate (Rb2SO4)
2.2.4. Indium (III) Sulfate (In2(SO4)3)
2.2.5. Ethylene Diamine Tetra Acetic Acid (EDTA)
2.2.6. Iodide/Polyiodide Electrolyte
2.3. Synthesis of Li+, Rb+, In3+ Doped PTA Thin Films
2.4. Characterization of Li−PTA, Rb−PTA, and In−PTA Thin-Film Photocathode
3. Results and Discussion
3.1. Proposed Growth and Reaction Pathway for Li−PTA, Rb−PTA, and In−PTA Thin Films
- (i)
- The reaction pathway for the deposition of Li3PW12O40 films is as follows:
- (ii)
- The reaction pathway for the formation of Rb3PW12O40 films is as follows.
- (iii)
- The reaction pathway for the formation of In3PW12O40 films is as follows.
3.2. Thickness Studies
3.3. Optical Absorption Studies
3.4. Structural Analysis of Li−PTA, Rb−PTA, and In−PTA by XRD
3.5. Morphological Studies
3.6. Compositional Studies
3.7. Photoelectrochemical Performance of Li−PTA, Rb−PTA, and In−PTA Thin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Badkoobehhezaveh, A.M.; Abdizadeh, H.; Golobostanfard, M.R. Electrophoretic behavior of solvothermal synthesized anion replaced Cu2ZnSn(SxSe1−x)4 films for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2018, 43, 11990. [Google Scholar] [CrossRef]
- Kim, K.J.; Pan, C.; Bansal, S.; Malhotra, R.; Kim, D.; Chang, C. Scalably synthesized environmentally benign, aqueous-based binary nanoparticle inks for Cu2ZnSn(S,Se)4 photovoltaic cells achieving over 9% efficiency. Sustain. Energy Fuels 2017, 1, 267. [Google Scholar] [CrossRef]
- Tiwari, D.; Skidchenko, E.; Bowers, J.; Yakushev, M.; Martin, R.; Fermin, D.J. Spectroscopic and electrical signatures of acceptor states in solution processed Cu2ZnSn(S,Se)4 solar cells. J. Mater. Chem. C 2017, 5, 12720. [Google Scholar] [CrossRef] [Green Version]
- Palilis, L.C.; Vasilopoulou, M.; Douvas, A.M.; Georgiadou, D.G.; Kennou, S.; Stathopoulos, N.A.; Constantoudis, V.; Argitis, P. Solution processable tungsten polyoxometalate as highly effective cathode interlayer for improved efficiency and stability polymer solar cells. Sol. Energy Mater. Sol. Cells 2013, 114, 205. [Google Scholar] [CrossRef]
- Uematsu, S.; Quan, Z.; Suganuma, Y.; Sonoyama, N. Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. J. Power Sources 2012, 217, 13. [Google Scholar] [CrossRef]
- Sonoyama, N.; Suganuma, Y.; Kume, T.; Quan, Z. Lithium intercalation reaction into the Keggin type polyoxomolybdates. J. Power Sources 2011, 196, 6822. [Google Scholar] [CrossRef]
- Liu, S.; Volkmer, D.; Kurth, D.G. Functional Polyoxometalate Thin Films via Electrostatic Layer-by-Layer Self-Assembly. J. Clust. Sci. 2003, 14, 405. [Google Scholar] [CrossRef]
- So, H.; Pope, M. Origin of some charge-transfer spectra. Oxo compounds of vanadium, molybdenum, tungsten, and niobium including heteropoly anions and heteropoly blues. Inorg. Chem. 1972, 11, 1441. [Google Scholar] [CrossRef]
- Okuhara, T.; Mizuno, N.; Misono, M. Catalytic Chemistry of Heteropoly Compounds. Adv. Catal. 1996, 41, 113. [Google Scholar]
- Zhixia, S.; Lin, X.; Weihua, G.; Bingbing, X.; Shuping, L.; Fengyan, L. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates. J. Phys. Chem. C 2010, 114, 5211. [Google Scholar]
- Zhixia, S.; Fengyan, L.; Mingliang, Z.; Lin, X.; Shuna, F. A comparative study on photoelectrochemical performance of TiO2 photoanodes enhanced by different polyoxometalates. Electrochem. Commun. 2013, 30, 38. [Google Scholar]
- Mane, S.R.; Walekar, B.J.; Mane, R.M.; Kondalkar, V.V.; Ghanwat, V.B.; Bhosale, P.N. Molybdenum Heteropolyoxometalate Thin Films for Solar Cell Applications. Procedia Mater. Sci. 2014, 6, 1104. [Google Scholar] [CrossRef] [Green Version]
- Ozer, R.R.; Ferry, J.L. Investigation of the Photocatalytic Activity of TiO2−Polyoxometalate Systems. Environ. Sci. Technol. 2001, 35, 3242. [Google Scholar] [CrossRef] [PubMed]
- Pope, M.T.; Muller, A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines. Angew. Chem. Int. Ed. Engl. 1991, 30, 34. [Google Scholar] [CrossRef]
- Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R.F. Polyoxometalates in Medicine. Chem. Rev. 1998, 98, 327. [Google Scholar] [CrossRef]
- Long, D.-L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105. [Google Scholar] [CrossRef]
- Parayil, S.K.; Lee, Y.M.; Yoon, M. Photoelectrochemical solar cell properties of heteropolytungstic acid-incorporated TiO2 nanodisc thin films. Electrochem. Commun. 2009, 11, 1211. [Google Scholar] [CrossRef]
- Kozhevnikov, I.V. Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem. Rev. 1998, 98, 171. [Google Scholar] [CrossRef]
- Sadakane, M.; Steckhan, E. Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chem. Rev. 1998, 98, 219. [Google Scholar] [CrossRef]
- Weinstock, I.A. Homogeneous-Phase Electron-Transfer Reactions of Polyoxometalates. Chem. Rev. 1998, 98, 113. [Google Scholar] [CrossRef]
- Guo, Y.H.; Wang, Y.H.; Hu, C.W.; Wang, Y.H.; Wang, E.B.; Zhou, Y.C.; Feng, S.H. Microporous Polyoxometalates POMs/SiO2: Synthesis and Photocatalytic Degradation of Aqueous Organocholorine Pesticides. Chem. Mater. 2000, 12, 3501. [Google Scholar] [CrossRef]
- Sun, Z.; Li, F.; Xu, L.; Liu, S.; Zhao, M.; Xu, B. Effects of Dawson-Type Tungstophosphate on Photoelectrochemical Responses of Cadmium Sulfide Composite Film. J. Phys. Chem. C 2012, 116, 6420. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Li, F.; Du, X.; Sun, Z. Enhanced photovoltaic response by incorporating polyoxometalate into a phthalocyanine-sensitized electrode. J. Mater. Chem. 2010, 20, 10835. [Google Scholar] [CrossRef]
- Soled, S.; Miseo, S.; McVicker, G.; Gates, W.E.; Gutierrez, A.; Paes, J. Preparation of bulk and supported heteropolyacid salts. Catal. Today 1997, 36, 441. [Google Scholar] [CrossRef]
- Neeft, J.P.A.; Makkee, M.; Moulijn, J.A. Metal oxides as catalysts for the oxidation of soot. Chem. Eng. J. 1996, 64, 295. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 2016, 89, 153. [Google Scholar] [CrossRef]
- Parry, E.P. An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. J. Catal. 1963, 2, 371. [Google Scholar] [CrossRef]
- Abu-Zied, B.M.; Farrag, A.A.; Asiri, A.M. Preparation of caesium-substituted phosphomolybdic acid via solid-state ion exchange method. Powder Technol. 2013, 246, 643. [Google Scholar] [CrossRef]
- Paul, N.; Hammond, R.B.; Hunter, T.N.; Edmondson, M.; Maxwell, L.; Biggs, S. Synthesis of nuclear waste simulants by reaction precipitation: Formation of caesium phosphomolybdate, zirconium molybdate and morphology modification with citratomolybdate complex. Polyhedron 2015, 89, 129. [Google Scholar] [CrossRef] [Green Version]
- Dawei, F.; Guobao, L.; Jingcheng, H. Fabrication and electrocatalytic activities of porphyrin and 12 molybdophosphoric acid hybrid films. J. Colloid Interface Sci. 2010, 351, 151. [Google Scholar]
- Khot, K.V.; Mali, S.S.; Ghanwat, V.B.; Kharade, S.D.; Mane, R.M.; Hong, C.K.; Bhosale, P.N. Photocurrent enhancement in a Cu2Cd(SSe)2 photoanode synthesized via an arrested precipitation route. New J. Chem. 2016, 40, 3277. [Google Scholar] [CrossRef]
- Ghanwat, V.B.; Mali, S.S.; Bagade, C.S.; Khot, K.V.; Desai, N.D.; Hong, C.K.; Bhosale, P.N. Enhancement in thermoelectric performance of Cu3SbSe4 thin films by In(III) doping; synthesized by arrested precipitation technique. J. Mater. Sci. Mater. Electron. 2018, 29, 8793. [Google Scholar] [CrossRef]
- Hassanien, A.S.; Akl, A.A.; El Redaf, I.M. Comparative Studies for Determining the Optical Band-gap Energy of the Novel Polycrystalline Thin Znga2s4 Films Sprayed at Different Film Thicknesses. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Khalaf, M.K.; Alhilli, B.A.M.; Khudiar, A.I.; Alzahra, A.A. Influence of nanocrystalline size on optical band gap in CdSe thin films prepared by DC sputtering. Photonics Nanostruct. Fundam. Appl. 2016, 18, 59. [Google Scholar] [CrossRef]
- Patil, S.S.; Mali, S.S.; Hong, C.K.; Bhosale, P.N. Designing of novel efficient photoactive ternary Zn1−xCu2xSe thin film materials via hydrothermal route: Photoelectrochemical (PEC) cell study. Mater. Sci. Semicond. Process. 2020, 105, 104727. [Google Scholar] [CrossRef]
- Vishwakarma, S.R.; Kumar, A.; Das, S.; Verma, A.K.; Tripathi, R.S.N. Thickness dependent properties of n-cdse thin films fabricated by electron beam evaporation technique. Chalcogenide Lett. 2013, 10, 239. [Google Scholar]
- Xin, M.; Li, K.W.; Wang, H. Synthesis of CuS thin films by microwave assisted chemical bath deposition. Appl. Surf. Sci. 2009, 256, 1436. [Google Scholar] [CrossRef]
- Woo, K.; Kim, Y.; Yang, W.; Kim, K.; Kim, I.; Oh, Y.; Kim, J.Y.; Moon, J. Band-gap-graded Cu2ZnSn(S1−x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Sci. Rep. 2013, 3, 3069. [Google Scholar] [CrossRef] [Green Version]
- Tao, M.; Zhang, D.; Guan, H.; Huang, G.; Wang, X. Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid. Sci. Rep. 2016, 6, 29840. [Google Scholar] [CrossRef] [Green Version]
- Haber, J.; Pamin, K.; Matachowski, L.; Napruszewska, B.; Poltowicz, J. Potassium and silver salts of tungstophosphoric acid as catalysts in dehydration of ethanol and hydration of ethylene. J. Catal. 2002, 207, 296. [Google Scholar] [CrossRef]
- Borghese, S.; Louis, B.; Blanc, A.; Pale, P. Design of silver (I)-heteropolyacids: Toward the molecular control of reactivity in organic chemistry. Catal. Sci. Technol. 2011, 1, 981. [Google Scholar] [CrossRef]
- Herberholz, R.; Carter, M.J. Investigation of the chalcogen interdiffusion in CuIn(TeSe)2 thin films. Sol. Energy Mater. Sol. Cells 1996, 44, 357. [Google Scholar] [CrossRef]
- Kite, S.V.; Sathe, D.J.; Patil, S.S.; Bhosale, P.N.; Garadkar, K.M. Nanostructured TiO2 thin films by chemical bath deposition method for high photoelectrochemical performance. Mater. Res. Express 2019, 6, 026411. [Google Scholar] [CrossRef]
- Ji, H.; Ju, H.; Lan, R.; Wu, P.; Sun, J.; Chao, Y.; Xun, S.; Zhu, W.; Li, H. Phosphomolybdic acid immobilized on ionic liquid-modified hexagonal boron nitride for oxidative desulfurization of fuel. RSC Adv. 2017, 7, 54266. [Google Scholar] [CrossRef] [Green Version]
- Savariraj, A.D.; Viswanathan, K.K.; Prabakar, K. CuS nano flakes and nano platelets as counter electrode for quantum dots sensitized solar cells. Electrochim. Acta 2014, 149, 364. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- Generosi, A.; Guaragno, M.; Zhu, Q.; Proust, A.; Barrett, N.T.; Tortech, L.; Paci, B. In-Situ Energy Dispersive X-ray Reflectivity Applied to Polyoxometalate Films: An Approach to Morphology and Interface Stability Issues in Organic Photovoltaics. Symmetry 2020, 12, 1240. [Google Scholar] [CrossRef]
Sample Code | Bath Composition | pH | Temperature (°C) | Deposition Time (h) |
---|---|---|---|---|
Li−PTA | 20 mL of 0.02 M H3PW12O40+ liquor NH3+ 10 mL of Li-EDTA complex were added to the above solution and the whole reaction mixture was put into a Teflon-lined stainless-steel autoclave with a capacity of 40 mL. | 5.2 ± 0.2 | 90 ± 2 °C | 3 h |
Rb−PTA | 20 mL of 0.02 M H3PW12O40+ liquor NH3+ 10 mL of Rb-EDTA complex were added to the above solution and the whole reaction mixture was put into a Teflon-lined stainless-steel autoclave with a capacity of 40 mL. | 6.8 ± 0.2 | 85 ± 2 °C | 3 h |
In−PTA | 20 mL of 0.02 M H3PW12O40+ liquor NH3+ 10 mL of In-EDTA complex were added to the above solution and the whole reaction mixture was put into a Teflon-lined stainless-steel autoclave with a capacity of 40 mL. | 6.5 ± 0.2 | 120 ± 2 °C | 3 h |
Sample Code | Crystallite Size (nm) | Dislocation Density (δ) (Line m−2) × 1014 | Microstrain (ε) (line−2 m−4) × 10−4 | Experimental d-Spacing Value (Å) |
---|---|---|---|---|
Li−PTA | 48.85 | 3.71 | 6.68 | 3.36 |
Rb−PTA | 72.03 | 1.92 | 4.81 | 3.33 |
In−PTA | 52.54 | 3.27 | 5.96 | 3.34 |
Sample Code | Eg (eV) | Jsc (mA cm−2) | Voc (mV) | Jmax (mA cm−2) | Vmax (mV) | FF | η% |
---|---|---|---|---|---|---|---|
Li−PTA | 2.24 | 1.23 | 690 | 0.92 | 418 | 0.44 | 1.254 |
Rb−PTA | 2.11 | 2.20 | 827 | 1.67 | 571 | 0.50 | 3.032 |
In−PTA | 2.13 | 1.35 | 770 | 1.05 | 465 | 0.46 | 1.627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadaf, S.N.; Patil, S.S.; Kalantre, V.A.; Mali, S.S.; Patil, J.V.; Hong, C.K.; Patil, S.S.; Bhosale, P.N.; Mane, S.R. Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films. Materials 2023, 16, 888. https://doi.org/10.3390/ma16030888
Nadaf SN, Patil SS, Kalantre VA, Mali SS, Patil JV, Hong CK, Patil SS, Bhosale PN, Mane SR. Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films. Materials. 2023; 16(3):888. https://doi.org/10.3390/ma16030888
Chicago/Turabian StyleNadaf, Sameer N., Satish S. Patil, Vilasrao A. Kalantre, Sawanta S. Mali, Jyoti V. Patil, Chang Kook Hong, Sharadchandra S. Patil, Popatrao N. Bhosale, and Sambhaji R. Mane. 2023. "Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films" Materials 16, no. 3: 888. https://doi.org/10.3390/ma16030888
APA StyleNadaf, S. N., Patil, S. S., Kalantre, V. A., Mali, S. S., Patil, J. V., Hong, C. K., Patil, S. S., Bhosale, P. N., & Mane, S. R. (2023). Towards Environment Friendly Hydrothermally Synthesized Li+, Rb+, In3+ Intercalated Phosphotungstate (PW12O40) Thin Films. Materials, 16(3), 888. https://doi.org/10.3390/ma16030888