Corrosion and Mechanical Behavior of Metal Materials
Conflicts of Interest
References
- Liu, M. Effect of uniform corrosion on mechanical behavior of E690 high-strength steel lattice corrugated panel in marine environment: A finite element analysis. Mater. Res. Express 2021, 8, 066510. [Google Scholar] [CrossRef]
- Liu, M. Finite element analysis of pitting corrosion on mechanical behavior of E690 steel panel. Anti-Corros. Methods Mater. 2022, 28, 7527–7536. [Google Scholar] [CrossRef]
- Calvo-García, E.; Valverde-Pérez, S.; Riveiro, A.; Álvarez, D.; Román, M.; Magdalena, C.; Badaoui, A.; Moreira, P.; Comesaña, R. An Experimental Analysis of the High-Cycle Fatigue Fracture of H13 Hot Forging Tool Steels. Materials 2022, 15, 7411. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lu, W.; Gou, G.; Dian, L.; Zhu, Z.; Jin, J. The Effect of Fatigue Damage on the Corrosion Fatigue Crack Growth Mechanism in A7N01P-T4 Aluminum Alloy. Metals 2023, 13, 104. [Google Scholar] [CrossRef]
- Liu, M.; Luo, S.J.; Shen, Y.; Lin, X.Z. Corrosion fatigue crack propagation behaviour of S135 high-strength drill pipe steel in H2S environment. Eng. Fail. Anal. 2019, 97, 493–505. [Google Scholar] [CrossRef]
- Yoo, Y.-R.; Choi, S.-H.; Kim, Y.-S. Effect of Laser Peening on the Corrosion Properties of 304L Stainless Steel. Materials 2023, 16, 804. [Google Scholar] [CrossRef]
- Jiang, X.; Li, G.; Tang, H.; Liu, J.; Cai, S.; Zhang, J. Modification of Inclusions by Rare Earth Elements in a High-Strength Oil Casing Steel for Improved Sulfur Resistance. Materials 2023, 16, 675. [Google Scholar] [CrossRef]
- Kang, C.-Y.; Chen, T.-C.; Tsay, L.-W. Effects of Micro-Shot Peening on the Stress Corrosion Cracking of Austenitic Stainless Steel Welds. Metals 2023, 13, 69. [Google Scholar] [CrossRef]
- Lyu, L.; Qiu, X.; Yue, H.; Zhou, M.; Zhu, H. Corrosion Behavior of Ti3SiC2 in Flowing Liquid Lead–Bismuth Eutectic at 500 °C. Materials 2022, 15, 7406. [Google Scholar] [CrossRef]
- Rudskoi, A.I.; Karkhin, V.A.; Starobinskii, E.B.; Parshin, S.G. Modeling of Hydrogen Diffusion in Inhomogeneous Steel Welded Joints. Materials 2022, 15, 7686. [Google Scholar] [CrossRef]
- Al-Huri, M.A.; Al-Osta, M.A.; Ahmad, S. Finite Element Modelling of Corrosion-Damaged RC Beams Strengthened Using the UHPC Layers. Materials 2022, 15, 7606. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Qin, L.; Cheng, X.; Xu, F.; Li, X. Microstructural evolution and its effect on corrosion behavior and mechanism of an austenite-based low-density steel during aging. Corros. Sci. 2023, 212, 110936. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Q.; Pan, Y.; Xiao, P.; Du, X.; Wang, S.; Zhang, N.; Wu, X. A Chemical Damage Creep Model of Rock Considering the Influence of Triaxial Stress. Materials 2022, 15, 7590. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, Y.; Sun, M.; Jia, J.; Cheng, X.; Pei, Z.; Li, Q.; Xu, D.; Xiao, K.; Li, X. A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology. J. Mater. Sci. Technol. 2022, 104, 67–80. [Google Scholar] [CrossRef]
- Zemková, M.; Minárik, P.; Jablonská, E.; Veselý, J.; Bohlen, J.; Kubásek, J.; Lipov, J.; Ruml, T.; Havlas, V.; Král, R. Concurrence of High Corrosion Resistance and Strength with Excellent Ductility in Ultrafine-Grained Mg-3Y Alloy. Materials 2022, 15, 7571. [Google Scholar] [CrossRef]
- Tao, J.; Xiang, L.; Zhang, Y.; Zhao, Z.; Su, Y.; Chen, Q.; Sun, J.; Huang, B.; Peng, F. Corrosion Behavior and Mechanical Performance of 7085 Aluminum Alloy in a Humid and Hot Marine Atmosphere. Materials 2022, 15, 7503. [Google Scholar] [CrossRef]
- Zhao, D.; Ye, F.; Liu, B.; Du, H.; Unigovski, Y.B.; Gutman, E.M.; Shneck, R. Effect of Surface Dissolution on Dislocation Activation in Stressed FeSi6.5 Steel. Materials 2022, 15, 7434. [Google Scholar] [CrossRef]
- Lu, C.-J.; Yeh, J.-W. Improved Wear and Corrosion Resistance in TiC-Reinforced SUS304 Stainless Steel. J. Compos. Sci. 2023, 7, 34. [Google Scholar] [CrossRef]
- Dorado, S.; Arias, A.; Jimenez-Octavio, J.R. Biomechanical Modelling for Tooth Survival Studies: Mechanical Properties, Loads and Boundary Conditions—A Narrative Review. Materials 2022, 15, 7852. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, Z.; Zhang, T.; Hu, R.; Wang, X. Microstructure Sensitivity on Environmental Embrittlement of a High Nb Containing TiAl Alloy under Different Atmospheres. Materials 2022, 15, 8508. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, B.; Fan, X.; Yuan, Y.; Zhu, Y. Corrosion Fatigue Degradation Characteristics of Galvanized and Galfan High-Strength Steel Wire. Materials 2023, 16, 708. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, X.; Su, B.; Sun, Y.; Li, X. Evaluation of Flexible Central Buckles on Short Suspenders’ Corrosion Fatigue Degradation on a Suspension Bridge under Traffic Load. Materials 2023, 16, 290. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, W.; Sun, P.; Liu, M. Time-Dependent Seismic Fragility of Typical Concrete Girder Bridges under Chloride-Induced Corrosion. Materials 2022, 15, 5020. [Google Scholar] [CrossRef]
- Ma, G.; Zhao, M.; Xiang, S.; Zhu, W.; Wu, G.; Mao, X. Effect of the Severe Plastic Deformation on the Corrosion Resistance of a Tantalum–Tungsten Alloy. Materials 2022, 15, 7806. [Google Scholar] [CrossRef] [PubMed]
- Merson, E.; Poluyanov, V.; Myagkikh, P.; Merson, D.; Vinogradov, A. Effect of Air Storage on Stress Corrosion Cracking of ZK60 Alloy Induced by Preliminary Immersion in NaCl-Based Corrosion Solution. Materials 2022, 15, 7862. [Google Scholar] [CrossRef]
- Li, C.; Freiberg, K.; Tang, Y.; Lippmann, S.; Zhu, Y. Formation of Nanoscale Al2O3 Protective Layer by Preheating Treatment for Improving Corrosion Resistance of Dilute Fe-Al Alloys. Materials 2022, 15, 7978. [Google Scholar] [CrossRef]
- Gao, X.; Liu, M. Corrosion Behavior of High-Strength C71500 Copper-Nickel Alloy in Simulated Seawater with High Concentration of Sulfide. Materials 2022, 15, 8513. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M. Corrosion and Mechanical Behavior of Metal Materials. Materials 2023, 16, 973. https://doi.org/10.3390/ma16030973
Liu M. Corrosion and Mechanical Behavior of Metal Materials. Materials. 2023; 16(3):973. https://doi.org/10.3390/ma16030973
Chicago/Turabian StyleLiu, Ming. 2023. "Corrosion and Mechanical Behavior of Metal Materials" Materials 16, no. 3: 973. https://doi.org/10.3390/ma16030973
APA StyleLiu, M. (2023). Corrosion and Mechanical Behavior of Metal Materials. Materials, 16(3), 973. https://doi.org/10.3390/ma16030973