Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, M.; Yang, C.; Zhang, Z.; Tian, W.; Hui, B.; Zhang, J.; Zhang, K. Tungsten oxide polymorphs and their multifunctional applications. Adv. Colloid Interface Sci. 2022, 300, 102596. [Google Scholar] [CrossRef]
- Shinde, P.A.; Jun, S.C. Review on recent progress in the development of tungsten oxide based electrodes for electrochemical energy storage. ChemSusChem 2020, 13, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Mardare, C.C.; Hassel, A.W. Review on the versatility of tungsten oxide coatings. Phys. Status Solidi 2019, 216, 1900047. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Li, Y.; Zafar, S.; Yang, S.; Chen, J.; Zhou, H.; Zhang, Y. Recent progress in hole-transporting layers of conventional organic solar cells with p–i–n structure. Adv. Funct. Mater. 2022, 32, 2205398. [Google Scholar] [CrossRef]
- Srivastava, S.; Jain, K.; Singh, V.N.; Singh, S.; Vijayan, N.; Dilawar, N.; Gupta, G.; Senguttuvan, T.D. Faster response of NO2 sensing in graphene–WO3 nanocomposites. Nanotechnology 2012, 23, 205501. [Google Scholar] [CrossRef]
- Depero, L.E.; Groppelli, S.; Natali-Sora, I.; Sangaletti, L.; Sberveglieri, G.; Tondello, E. Structural studies of tungsten-titanium oxide thin films. J. Solid State Chem. 1996, 121, 379–387. [Google Scholar] [CrossRef]
- Mattoni, G.; Filippetti, A.; Manca, N.; Zubko, P.; Caviglia, A.D. Charge doping and large lattice expansion in oxygen-deficient heteroepitaxial WO3. Phys. Rev. Mater. 2018, 2, 053402. [Google Scholar] [CrossRef]
- Wu, C.M.; Naseem, S.; Chou, M.H.; Wang, J.H.; Jian, Y.Q. Recent advances in tungsten-oxide-based materials and their applications. Front. Mater. 2019, 6, 49. [Google Scholar] [CrossRef]
- Park, S.I.; Quan, Y.J.; Kim, S.H.; Kim, H.; Kim, S.; Chun, D.M.; Lee, C.S.; Taya, M.; Chu, W.S.; Ahn, S.H. A review on fabrication processes for electrochromic devices. Int. J. Precis. Eng. Manuf. Green Technol. 2016, 3, 397–421. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, H.; Su, Y.; Tang, P.; Dai, M.; Lin, H.; Zhang, Z.; Shi, Q. Enhanced electrochromic properties by improvement of crystallinity for sputtered WO3 film. Coatings 2020, 10, 577. [Google Scholar] [CrossRef]
- Karuppasamy, A. Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering. Appl. Surf. Sci. 2013, 282, 77–83. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Chang, C.-W. Preparation of orthorhombic WO3 thin films and their crystal quality-dependent dye photodegradation ability. Coatings 2019, 9, 90. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Li, W.; Dou, S.; Wang, L.; Qu, H.; Zhao, J.; Li, Y. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Sol. Energy Mater. Sol. Cells 2019, 200, 109916. [Google Scholar] [CrossRef]
- Karthik Yadav, P.V.; Ajitha, B.; Reddy, Y.A.K.; Minnam Reddy, V.R.; Reddeppa, M.; Kim, M.-D. Effect of sputter pressure on UV photodetector performance of WO3 thin films. Appl. Surf. Sci. 2021, 536, 147947. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Reddy, Y.A.K.; Ajitha, B.; Minnam Reddy, V.R. Oxygen partial pressure dependent UV photodetector performance of WO3 sputtered thin films. J. Alloys Compd. 2020, 816, 152565. [Google Scholar] [CrossRef]
- Duarte, D.A.; Massi, M.; Da Silva Sobrinho, A.S.; Tezani, L.L.; Fontana, L.C.; Maciel, H.S. Influence of electronegative gas on the efficiency of conventional and hollow cathode magnetron sputtering systems. ECS Trans. 2009, 23, 143–148. [Google Scholar] [CrossRef]
- Musschoot, J.; Haemers, J. Qualitative model of the magnetron discharge. Vacuum 2009, 84, 488–493. [Google Scholar] [CrossRef]
- Berggren, L.; Jonsson, J.C.; Niklasson, G.A. Optical absorption in lithiated tungsten oxide thin films: Experiment and theory. J. Appl. Phys. 2007, 102, 083538. [Google Scholar] [CrossRef]
- Mohamed, S.H.; Mohamed, H.A.; Abd El Ghani, H.A. Development of structural and optical properties of WOx films upon increasing oxygen partial pressure during reactive sputtering. Phys. B Condens. Matter. 2011, 406, 831–835. [Google Scholar] [CrossRef]
- Berggren, L.; Niklasson, G.A. Optical absorption and durability of sputtered amorphous tungsten oxide films. Solid State Ion. 2003, 165, 51–58. [Google Scholar] [CrossRef]
- Sundberg, M.; Zakharov, N.D.; Zibrov, I.P.; Barabanenkov, Y.A.; Filonenko, V.P.; Werner, P. Two high-pressure tungsten oxide structures of W3O8 stoichiometry deduced from high-resolution electron microscopy images. Acta Crystallogr. Sect. B Struct. Sci. 1993, 49, 951–958. [Google Scholar] [CrossRef]
- Frey, G.L.; Rothschild, A.; Sloan, J.; Rosentsveig, R.; Popovitz-Biro, R.; Tenne, R. Investigations of nonstoichiometric tungsten oxide nanoparticles. J. Solid State Chem. 2001, 162, 300–314. [Google Scholar] [CrossRef]
- Tang, X.; Huang, J.; Liao, H.; Chen, G.; Mo, Z.; Ma, D.; Zhan, R.; Li, Y.; Luo, J. Growth of W18O49/WOx/W dendritic nanostructures by one-step thermal evaporation and their high-performance photocatalytic activities in methyl orange degradation. CrystEngComm 2019, 21, 5905–5914. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. Amorphous WO3−x thin films with color characteristics tuned by the oxygen vacancies created during reactive DC sputtering. J. Mater. Sci. Technol. 2021, 78, 223–228. [Google Scholar] [CrossRef]
- Kim, W.M.; Kim, J.S.; Jeong, J.H.; Park, J.K.; Baik, Y.J.; Seong, T.Y. Analysis of optical band-gap shift in impurity doped ZnO thin films by using nonparabolic conduction band parameters. Thin Solid Films 2013, 531, 430–435. [Google Scholar] [CrossRef]
- Thummavichai, K.; Xia, Y.; Zhu, Y. Recent progress in chromogenic research of tungsten oxides towards energy-related applications. Prog. Mater. Sci. 2017, 88, 281–324. [Google Scholar] [CrossRef]
- Wang, F.; Di Valentin, C.; Pacchioni, G. Semiconductor-to-metal transition in WO3−x: Nature of the oxygen vacancy. Phys. Rev. B. Condens. Matter Mater. Phys. 2011, 84, 073103. [Google Scholar] [CrossRef]
- Verma, M.; Singh, K.P.; Kumar, A. Reactive magnetron sputtering based synthesis of WO3 nanoparticles and their use for the photocatalytic degradation of dyes. Solid State Sci. 2020, 99, 105847. [Google Scholar] [CrossRef]
- De Wijs, G.A.; De Groot, R.A. Structure and electronic properties of amorphous WO3. Phys. Rev. B 1999, 60, 16463–16474. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase–rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low-Dimens. Syst. Nanostructures 2014, 56, 364–371. [Google Scholar] [CrossRef]
- Demiryont, H.; Nietering, K.E. Tungsten oxide films by reactive and conventional evaporation techniques. Appl. Opt. 1989, 28, 1494. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.; Martin, N.; Devel, M.; Ollitrault, J.; Billard, A. Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films 2013, 534, 275–281. [Google Scholar] [CrossRef] [Green Version]
Deposition Parameters | Atomic Composition | Structural Properties | Optical Properties | Electrical Properties | ||
---|---|---|---|---|---|---|
P (W/cm2) | Opp (%) | O/W (at%) | XRD Data | Eg (eV) | EU (eV) | σ (S/cm) |
1 | 5 | 2.60 | amorphous | metallic | 1.79 | 1.45 × 101 |
1 | 10 | 2.80 | amorphous | 3.72 | 0.29 | 7.85 × 10−4 |
1 | 15 | 2.98 | amorphous | 3.71 | 0.19 | 1.10 × 10−4 |
2 | 10 | 2.58 | amorphous | metallic | 1.57 | 1.05 × 101 |
2 | 20 | 2.82 | Orthorhombic WO3 & W3O8 | 3.47 | 0.21 | 9.10 × 10−4 |
2 | 30 | 2.98 | Monoclinic WO3 &W18O49 | 3.45 | 0.18 | 1.20 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén, C. Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials 2023, 16, 1359. https://doi.org/10.3390/ma16041359
Guillén C. Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials. 2023; 16(4):1359. https://doi.org/10.3390/ma16041359
Chicago/Turabian StyleGuillén, Cecilia. 2023. "Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature" Materials 16, no. 4: 1359. https://doi.org/10.3390/ma16041359
APA StyleGuillén, C. (2023). Polycrystalline WO3−x Thin Films Obtained by Reactive DC Sputtering at Room Temperature. Materials, 16(4), 1359. https://doi.org/10.3390/ma16041359