
Citation: Lee, J.-I.; Kim, C.-Y.; Yoon,

J.-H.; Choi, S.-J. Mechanical

Properties of Cement Mortar

Containing Ground Waste

Newspaper as Cementitious Material.

Materials 2023, 16, 1374. https://

doi.org/10.3390/ma16041374

Academic Editor: Rui Vasco Silva

Received: 6 January 2023

Revised: 3 February 2023

Accepted: 3 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Mechanical Properties of Cement Mortar Containing Ground
Waste Newspaper as Cementitious Material
Jae-In Lee, Chae-Young Kim, Joo-Ho Yoon and Se-Jin Choi *

Department of Architectural Engineering, Wonkwang University, 460 Iksan-daero, Iksan 54538, Republic of Korea
* Correspondence: csj2378@wku.ac.kr

Abstract: In recent years, several studies have reported the recycling of by-products generated by
the paper industry and their application to the construction industry. A majority of the existing
studies used waste paper sludge ash, and considerable energy is consumed in such incineration
processes. This may further contribute to air pollution. In this study, we used waste newspaper
(WNP), which underwent a simple crushing process without a separate high-temperature treatment
process, and we integrated it in cement mortar. We prepared mortars containing 0%, 0.2%, 0.4%,
0.6%, 0.8%, and 1.0% ground WNP as a cement substitute. Subsequently, the fluidity, compressive
strength, tensile strength, carbonation depth, drying shrinkage, and microstructure of the mortars
were compared and analyzed. The 28-day compressive strength of the mortar samples with WNP was
approximately 3.2–16.1% higher than that of the control sample. The 28-day accelerated carbonation
depth of the samples with WNP was approximately 1.03–1.61 mm. Furthermore, their carbonation
resistance was approximately 5.2–39.4% higher than that of the control sample. Compressive strength,
tensile strength, and carbonation resistance were improved by appropriately using ground WNP as a
cement substitute in cement mortar. In this study, the appropriate amount of WNP according to the
mechanical properties of cement mortar was found to be 0.4–0.8%, and considering the durability
characteristics, the value 0.6 was the most ideal.

Keywords: waste newspaper; cement mortar; compressive strength; tensile strength; carbonation depth

1. Introduction

In recent years, various efforts have been made to reduce greenhouse gas emissions
and environmental load at home and abroad, such as through the use of ecofriendly
materials and alternative energy [1,2]. In addition, as countries are promoting carbon-
neutral policies, the construction industry must make efforts to reduce greenhouse gas
emissions [3]. Portland cement is widely used in the construction industry. It is a powder-
type binder that has been used for a long time. It strongly affects environmental pollution,
accounting for approximately 5–9% of greenhouse gas emissions generated during cement
production [4]. To reduce total cement consumption in the concrete industry, many studies
have investigated the application of cementitious materials such as fly ash, blast furnace
slag, and silica fume to cement concrete [5–10].

Meanwhile, approximately 1.6 million tons of paper sludge, which is a by-product
of the paper industry, is generated annually in Korea. This paper sludge contains about
60–70% moisture and causes environmental pollution when it is dumped in landfills,
incinerated, and illegally discharged during the treatment process [11].

To solve these problems, several studies have examined the recycling of by-products
from the paper industry and their application to the construction industry [12–22]. Sudha
et al. [13] reviewed the strength characteristics of concrete mixed with 5%, 10%, 15%, and
20% waste paper sludge ash as a cement substitute. They reported that the compressive
strength and tensile strength of concrete increased when it was mixed with up to 10% waste
paper sludge ash and decreased thereafter. Shabbir et al. [14] investigated the feasibility
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of waste paper sludge ash (WPSA) use in concrete. The setting time of cement and the
weight of concrete decreased as the mixing ratio of WPSA increased. In addition, WPSA
could replace up to 15% of cement by weight. Garcia et al. [15] examined the pozzolanic
properties of waste paper sludge. They reported high pozzolanic activity when paper
ink-removed sludge was calcined at 700 ◦C. Additionally, compressive strength increased
when 10% of the ink-removed sludge was used as a cement substitute. Hong et al. [16] used
paper sludge ash (PSA) to produce powder and then mixed it with concrete. They found
that the water absorption and thermal conductivity of the sample with 12% PSA were 84%
and 86% of the non-blended sample, respectively. Bui et al. [17] used by-products such as
waste paper sludge ash (PSA), fly ash, and silica fume in recycled aggregate concrete. The
outcomes of their study reported that PSA improved the mechanical properties of recycled
aggregate concrete at an early age.

However, a majority of the existing studies used waste paper sludge ash. In the
associated incineration process, a significant amount of energy is consumed, which may
further contribute to air pollution. In this study, we prepared waste newspaper (WNP),
which underwent a simple crushing process without a separate high-temperature treatment
process, and incorporated it into cement mortar. We conducted an experiment to study
the applicability of ground WNP as a cement substitute. For this purpose, we prepared
mortars containing 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0% ground WNP for use as a cement
substitute. We then analyzed and compared the fluidity, compressive strength, tensile
strength, carbonation depth, drying shrinkage, and microstructure of the mortars.

2. Experimental Materials and Methods
2.1. Materials

Ordinary Portland cement (Hanil Hyundai Cement, Seoul, Republic of Korea) was
used in this study. Natural sand from Namwon with a density of 2.60 g/cm3 and a fineness
modulus of 2.45 was used as the fine aggregate. We used WNP available in the Wonkwang
University, Iksan-si, Republic of Korea. Based on the outcomes of several preliminary
experiments, it was submerged in water for 24 h, dried for 48 h, and then grinded using
a grinder.

Tables 1 and 2 show the chemical composition of the cement and WNP, respectively.
Table 3 shows the physical properties of the fine aggregate. Figures 1 and 2 show the shapes
and scanning electron microscopy (SEM) images of the cement and ground WNP, and
Figure 3 shows the particle size distribution curve of the fine aggregate.

Table 1. Chemical composition of cement.

Type SiO2 Al2O3 Fe2O3 CaO MgO K2O Blaine
(cm2/g)

Density
(g/cm3)

Ordinary Portland cement 17.43 6.50 3.57 64.40 2.55 1.17 3430 3.15

Table 2. Chemical composition of WNP.

Type C O Si Al Ca K

Ground waste
newspaper (WNP) 40.6 38.3 9.5 9.0 2.3 0.3

Table 3. Physical properties of fine aggregate.

Type Fineness Modulus Density
(g/cm3) Water Absorption (%)

Natural sand (NS) 2.45 2.60 1.0
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2.2. Mixing Proportions and Testing Methods

Table 4 shows the mixing proportions of the cement mortars used in this study. We
selected W/B 50%, which is widely used as a water–binder ratio (W/B) for normal concrete
mixtures in Korea. We used ground WNP to replace 0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1.0%
of the cement by weight. Cubic specimens with dimensions of 50 mm × 50 mm × 50 mm
were prepared via molding for compressive strength testing, and cylindrical specimens
with dimensions of ø50 mm × 100 mm were prepared for split tensile strength testing [23]
and carbonation tests. In addition, 40 mm × 40 mm × 160 mm specimens were prepared
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for evaluation of drying shrinkage. We demolded the specimens after 24 h and cured them
in a water tank at 20 ◦C until they reached the required age.

Table 4. Mixing proportions of mortars.

Mix W/B
(%)

S/a *
(%)

WNP **
(C *%)

Water
(kg/m3)

Cement
(kg/m3)

NS
(kg/m3)

WNP
(kg/m3)

Control

50 42

0

170

340.0

739

0
WNP0.2 0.2 339.3 0.7
WNP0.4 0.4 338.6 1.4
WNP0.6 0.6 338.0 2.0
WNP0.8 0.8 337.3 2.7
WNP1.0 1.0 336.6 3.4

* S/a: sand to aggregate ratio, ** WNP: waste newspaper.

Mortar flow and compressive strength were measured according to KS L 5105 [24],
and tensile strength was determined according to KS F 2423 [25]. In the carbonation test,
carbonation depth was measured after the carbonation process using a phenolphthalein
solution in an accelerated carbonation chamber according to KS F 2584 [26] (Figure 4). In
the case of drying shrinkage, we demolded after 24 h in accordance with KS F 2424 [27]
and cured in a water tank at 20 ± 3 ◦C for 1 week. The samples were then preserved in
an environment where the temperature was maintained at 20 ± 3 ◦C and the humidity at
60 ± 5%, and it was measured using a contact gauge. In addition, SEM (AIS1800C, SERON
Technologies, Seoul, Republic of Korea) and energy-dispersive X-ray spectroscopy (EDS;
OXFORD Instruments, Xplore, Abingdon, UK) were used for microstructural analysis.
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Figure 4. Carbonation depth measurement of (a) splitting samples and (b) the measurement of
carbonation depth.

3. Results and Discussion
3.1. Mortar Flow

Figure 5 shows the change in mortar flow according to the WNP mixing ratio. In the
control sample without WNP, the highest flow was approximately 176 mm. In the case of
the samples with WNP, the flow was the highest in the WNP0.2 sample (164 mm). Mortar
flow gradually decreased as the WNP mixing ratio increased. The flow of the WNP1.0
sample was the lowest at approximately 123 mm, which was approximately 30.1% lower
than that of the control sample.



Materials 2023, 16, 1374 5 of 11

Materials 2023, 16, x FOR PEER REVIEW 5 of 12 
 

 

sample was the lowest at approximately 123 mm, which was approximately 30.1% lower 
than that of the control sample. 

This was because cellulose, which is the main component of WNP, is a hydrophilic 
material with high water absorption [28,29]. Thus, it absorbed water during mixing and 
the flow decreased. The decrease in mortar flow may cause deterioration of workability 
and poor compaction at construction sites. 

 
Figure 5. Mortar flow. 

3.2. Compressive Strength 
Figure 6 shows the change in the compressive strength of the mortars according to 

the WNP mixing ratio. At an age of 7 days, the highest compressive strength (approxi-
mately 36.8 MPa) was observed in the control sample. In the case of the samples with 
WNP, the highest compressive strength (approximately 34.9 MPa) was observed in the 
WNP0.4 sample, and the lowest compressive strength (approximately 28.9 MPa) was ob-
served in the WNP 1.0 sample. The 7-day compressive strength of the samples with WNP 
was approximately 5.1–21.4% lower than that of the control sample. 

At an age of 28 days, the compressive strength of the control sample was approxi-
mately 38.0 MPa, and that of the WNP0.4 sample was approximately 44.1 MPa, which was 
approximately 16.1% higher than that of the control sample. The 28-day compressive 
strength of the WNP0.8 sample was approximately 43.5 MPa, which was approximately 
27.9% higher than the 7-day compressive strength. The 28-day compressive strength of all 
mortar samples with WNP was approximately 3.2–16.1% higher than that of the control 
sample. In addition, the compressive strength evolution rate of the samples with WNP 
after 7 days was 19.9–35.9%, which was significantly higher than that of the control sample 
(3.2%). The compressive strength of the samples with WNP increased because the water–
binder ratio decreased as WNP absorbed water during mixing. In addition, the hydration 
product adhered to the rough cellulose surface and increased the density of the internal 
structure [30]. 

In this study, the early compressive strength of the sample that used WNP was lower 
than that of the control sample, and the strength of the sample increased afterwards. This 
may be attributed to the fact that initial hydration was delayed due to the high water 
absorption of WNP and the increase in micropores [16,31]. In addition, the tendency to 
increase strength may be attributed to the release of absorbed moisture, which thus pro-
motes hydration; hydration products may form on the cellulose surface to fill pores, re-
sulting in a dense structure [30,32]. However, when the amount of WNP used increases, 

Figure 5. Mortar flow.

This was because cellulose, which is the main component of WNP, is a hydrophilic
material with high water absorption [28,29]. Thus, it absorbed water during mixing and
the flow decreased. The decrease in mortar flow may cause deterioration of workability
and poor compaction at construction sites.

3.2. Compressive Strength

Figure 6 shows the change in the compressive strength of the mortars according to the
WNP mixing ratio. At an age of 7 days, the highest compressive strength (approximately
36.8 MPa) was observed in the control sample. In the case of the samples with WNP,
the highest compressive strength (approximately 34.9 MPa) was observed in the WNP0.4
sample, and the lowest compressive strength (approximately 28.9 MPa) was observed
in the WNP 1.0 sample. The 7-day compressive strength of the samples with WNP was
approximately 5.1–21.4% lower than that of the control sample.
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At an age of 28 days, the compressive strength of the control sample was approxi-
mately 38.0 MPa, and that of the WNP0.4 sample was approximately 44.1 MPa, which
was approximately 16.1% higher than that of the control sample. The 28-day compressive
strength of the WNP0.8 sample was approximately 43.5 MPa, which was approximately
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27.9% higher than the 7-day compressive strength. The 28-day compressive strength of all
mortar samples with WNP was approximately 3.2–16.1% higher than that of the control
sample. In addition, the compressive strength evolution rate of the samples with WNP
after 7 days was 19.9–35.9%, which was significantly higher than that of the control sample
(3.2%). The compressive strength of the samples with WNP increased because the water–
binder ratio decreased as WNP absorbed water during mixing. In addition, the hydration
product adhered to the rough cellulose surface and increased the density of the internal
structure [30].

In this study, the early compressive strength of the sample that used WNP was lower
than that of the control sample, and the strength of the sample increased afterwards. This
may be attributed to the fact that initial hydration was delayed due to the high water
absorption of WNP and the increase in micropores [16,31]. In addition, the tendency
to increase strength may be attributed to the release of absorbed moisture, which thus
promotes hydration; hydration products may form on the cellulose surface to fill pores,
resulting in a dense structure [30,32]. However, when the amount of WNP used increases,
some strength may be lost due to the fiber ball phenomenon of WNP, which is similar to
fiber [33].

3.3. Split Tensile Strength

Figure 7 shows the change in the split tensile strength of the mortar according to the
WNP mixing ratio after 28 days. The tensile strength of the control sample was approxi-
mately 3.28 MPa. The tensile strength of the WNP0.4 sample was approximately 3.29 MPa,
which was similar to that of the control sample. The tensile strength of the WNP1.0 sample
was approximately 3.55 MPa, which was the highest, and it was approximately 8.2% higher
than that of the control sample.
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The increase in the tensile strength of mortar samples containing WNP may be at-
tributed to the improvement in adhesion performance between the rough surface of WNP
and the cement paste [34,35]. However, in some samples that contain WNP, strength de-
graded due to the fiber ball phenomenon [33], indicating the need for further research on
the correlation between the homogeneous dispersion method and mechanical properties.

3.4. Carbonation Resistance

Figure 8 shows the change in the carbonation depth of the mortar samples according
to the WNP mixing ratio. The accelerated carbonation depth of the control sample was
the highest at approximately 1.70 mm. The carbonation depth of the WNP0.6 sample was
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the lowest at approximately 1.03 mm, and it was approximately 39.4% lower than that
of the control sample. The carbonation depth of the WNP1.0 sample was approximately
1.61 mm, which was the highest among the samples with WNP. This was due to the
relatively low 28-day compressive strength [36] of the WNP1.0 sample, as shown in the
compressive strength test results (Figure 5). Carbonation depth did not exhibit a variation
trend according to the WNP mixing ratio. In addition, the carbonation depth of all the
samples with WNP was lower than that of the control samples. The 28-day accelerated
carbonation depth of the samples with WNP was approximately 1.03–1.61 mm, and their
carbonation resistance was approximately 5.2–39.4% higher than that of the control sample.
This was because cellulose formed an asymmetric structure, which reduced the inflow rate
of CO2 through internal crack control, thereby increasing carbonation resistance [37].
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Figure 9 shows the correlation between compressive strength and carbonation depth.
Carbonation depth tends to decrease as compressive strength increases, and the correlation
was not sufficiently high.
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3.5. Drying Shrinkage

Figure 10 shows the change in mortar drying shrinkage according to the WNP mixing
ratio. The drying shrinkage of the control sample was the lowest at approximately 0.101%.
The drying shrinkage of the WNP0.2 and WNP0.8 samples was approximately 0.104%,
which was relatively low. The drying shrinkage of the WNP1.0 sample was the highest at
approximately 0.116%.
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Figure 10. Drying shrinkage.

The drying shrinkage of the samples with WNP was higher than that of the control
sample because cellulose absorbed moisture and then released the absorbed water over
time [38]. According to the existing literature [39,40], approximately 30–40% of cellulose
can be extracted from newspaper.

3.6. Microstructural Analysis

Figure 11 shows the microstructural analysis of the samples. From the SEM images, it
can be observed that there was no significant difference between the surface of the sample
containing WNP and the surface of the control sample.
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Table 5 shows the EDS results for component analysis of the samples. The components
were detected in the order of Ca, C, Si, and Al in the control sample and C, Si, Al, and Ca in
the WNP0.2 and WNP0.8 samples. The amounts of Si and Al in the samples with WNP
were larger than those in the control sample.

Table 5. Energy-dispersive X-ray spectroscopy analysis result.

Mix Element Weight (%) б

Control

O 44.88 55.37
Ca 24.55 12.09
C 14.49 23.82
Si 4.24 2.98
Al 4.01 2.93
K 0.26 0.13

WNP0.2

O 38.12 40.52
Ca 2.82 1.19
C 28.03 39.68
Si 16.45 9.96
Al 8.81 5.55
K 2.19 0.95

WNP0.8

O 39.5 45.05
Ca 4.2 1.92
C 21.4 32.54
Si 16.0 10.41
Al 10.7 7.25
K 1.9 0.86

4. Conclusions

The main results of the study are summarized below.

1. Mortar flow gradually decreased as the WNP mixing ratio increased. This may
be attributed to the fact that cellulose, which is the main component of WNP, is a
hydrophilic material with high water absorbency. Thus, it absorbed water during
mixing and the flow subsequently decreased.

2. The early compressive strength of the sample containing WNP was lower than that
of the control sample, and strength increased afterwards. This may be attributed
to the fact that initial hydration was delayed due to the high water absorption of
WNP and the increase in micropores. In addition, the tendency to increase strength
may be caused by the release of absorbed moisture, which thus promotes hydration;
hydration products may form on the cellulose surface to fill pores, resulting in a
dense structure.

3. The 28-day accelerated carbonation depth of the samples with WNP was approxi-
mately 1.03–1.61 mm, and their carbonation resistance was approximately 5.2–39.4%
higher than that of the control sample.

4. It was confirmed that compressive strength, tensile strength, and carbonation resis-
tance were improved by utilizing ground WNP as a cement substitute in mortar. In
this study, the appropriate amount of WNP according to the mechanical properties of
cement mortar was found to be 0.4–0.8%, and considering durability characteristics,
0.6% WNP was the optimal value.

In the future, it is necessary to examine the correlation between the microstructure,
mechanical properties, and durability properties of samples with WNP.
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