Influence of Haunch Geometry and Additional Steel Reinforcement on Load Carrying Capacity of Reinforced Concrete Box Culvert
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Geometric Details
2.3. Materials and Elements
2.4. Boundary Conditions, Interactions, and Loading
3. Results and Discussion
3.1. Modal Validation
3.2. Parametric Analysis
- Case 1: Near Surface Mounted (NSM) L-shaped reinforcement bars;
- Case 2: NSM diagonal brackets;
- Case 3: Concrete haunches and diagonal reinforcement.
3.3. Stress Distribution and Ultimate Load-Carrying Capacity
3.4. Influence of Additional Steel Reinforcement and Concrete Haunches
4. Conclusions
- The link between the slab and the wall was found to have the highest likelihood of stress concentrations;
- The NSM rebars of an L-shape and diagonal bracket slightly influence the capacity and could be useful for small repairs and restoration works;
- The precast reinforced box culvert’s FE modelling indicates that adding diagonal reinforcement and a haunch construction could appreciably enhance its capacity. A 25% increase in the ultimate load-carrying capacity was found when the ultimate capacity of models with and without haunches was compared.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smart, P.; Graham Herbertson, J. (Eds.) Drainage Design; Blackie: Glasgow, UK, 1992. [Google Scholar]
- McGrath, T.J.; Moore, I.D.; Selig, E.T.; Webb, M.C.; Taleb, B. NCHRP Report 473: Recommended Specifications for Large-Span Culverts; Transportation Research Board: Washington, DC, USA, 2002. [Google Scholar]
- Mackie, K.; Stojadinovic, B. Seismic Demands for Performance-Based Design of Bridges, PEER Report 2003–16; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2003. [Google Scholar]
- AASHTO. LRFD Bridge Design Specifications, 9th ed.; American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020. [Google Scholar]
- Stagrum, A.E.; Andenæs, E.; Kvande, T.; Lohne, J. Climate change adaptation measures for buildings—A scoping review. Sustainability 2020, 12, 1721. [Google Scholar] [CrossRef]
- Douglas, I.; Alam, K.; Maghenda, M.; Mcdonnell, Y.; McLean, L.; Campbell, J. Unjust waters: Climate change, flooding and the urban poor in Africa. Environ. Urban. 2008, 20, 187–205. [Google Scholar] [CrossRef]
- Jaeger, R.; Tondera, K.; Pather, S.; Porter, M.; Jacobs, C.; Tindale, N. Flow control in culverts: A performance comparison between inlet and outlet control. Water 2019, 11, 1408. [Google Scholar] [CrossRef]
- Crisfeld, M.A. Snap-through and snap- back response in concrete structures and the dangers of under-integration. Int. J. Numer. Meth. Eng. 1986, 22, 751–767. [Google Scholar] [CrossRef]
- Marzouk, H.; Osman, M.; Hussein, A. Punching shear of slabs: Crack size and size effects. Mag. Concr. Res. 2002, 54, 13–21. [Google Scholar] [CrossRef]
- Polak, M.A. Shell fnite element analysis of RC plates supported on columns for punching shear and fexure. Int. J. Comput.-Aided Eng. Softw. 2005, 22, 409–428. [Google Scholar] [CrossRef]
- Inyeop, C.; Woo, S.-K.; Woo, S.I.; Kim, J.; Lee, K. Analysis of Vertical Earth Pressure Acting on Box Culverts through Centrifuge Model Test. Appl. Sci. 2021, 12, 81. [Google Scholar]
- Lee, K.; Kim, J.; Woo, S.I. Analysis of Horizontal Earth Pressure Acting on Box Culverts through Centrifuge Model Test. Appl. Sci. 2022, 12, 1993. [Google Scholar] [CrossRef]
- Al-Zaidee, S.R.; Alsalmani, A.H.; Salam, A. Effects of Soil-structure Interaction and Different Simulation on the Response of Concrete Box Culverts. IOP Conf. Ser. Mater. Sci. Eng. 2020, 901, 012009. [Google Scholar] [CrossRef]
- Ozturk, K.F.; Cakir, T.; Araz, O. A comparative study to determine seismic response of the box culvert wing wall under influence of soil-structure interaction considering different ground motions. Soil Dyn. Earthq. Eng. 2022, 162, 107452. [Google Scholar] [CrossRef]
- Gong, Y.; Ma, Y.; Tan, G.; Bi, H.; Pang, Y.; Ma, C. Experimental Study and Numerical Simulation on Failure Process of Reinforced Concrete Box Culvert. Adv. Civ. Eng. 2020, 2020, 5423706. [Google Scholar] [CrossRef]
- Anil, G.; Ali, A. Finite-element modeling and analysis of reinforced concrete box culverts. J. Transp. Eng. 2009, 135, 121–128. [Google Scholar]
- Moradi, M.; Valipour, H.; Foster, S. Reserve of Strength in Inverted U-Shaped RC Culverts: Effect of Backfill on Ultimate Load Capacity and Fatigue Life. J. Bridge 2016, 21, 04015051. [Google Scholar] [CrossRef]
- Maximos, H.; Erdogmus, E.; Tadros, M.K. Fatigue evaluation for reinforced concrete box culverts. ACI Struct. J. 2010, 107, 13–20. [Google Scholar]
- Garg, A.K.; Abolmaali, A.; Fernandez, R. Experimental investigation of shear capacity of precast reinforced concrete box culverts. J. Bridge Eng. 2007, 12, 511–517. [Google Scholar] [CrossRef]
- Sinha, B.; Sharma, R. RCC box culvert—Methodology and design including computer method. J. Indian Roads Congr. 2009, 555, 198–219. [Google Scholar]
- Anderson, D.; Wang, J.; Martin, G.; Lam, I. Proposed seismic design methods for transportation culverts and drainage structures. Lifeline Earthq. Eng. Multihazard Environ. 2009, 15, 1187–1198. [Google Scholar]
- Esra, B.F. Response of long-span box type soil-steel composite structures during ultimate loading tests. J. Bridge Eng. 2009, 14, 496–506. [Google Scholar]
- Kim, D.; Bhowmik, S.; Willmer, J.; Leo, E. A case history and finite element modeling of a culvert failure. Geo-Frontiers 2011, 2011, 1943–5606. [Google Scholar]
- Zenagebriel, G.; Li, J.; Qiao, G. Experimental and Finite Element Analysis of Precast Reinforced Concrete U-Shaped Box Culvert. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 2133–2143. [Google Scholar] [CrossRef]
- Gebremedhn, Z.; Qiao, G.; Sun, L.; Li, H.; Bai, S.; Jin, H. Strain/Stress Self-Sensing Precast-Box Culvert: Smart Element Design, and Experimental Verification. Int. J. Civ. Eng. 2021, 19, 851–859. [Google Scholar] [CrossRef]
- Hussien, O.S. Reduction of box culvert stresses. Environ. Eng. Manag. J. 2020, 19, 1969–1974. [Google Scholar] [CrossRef]
- Lu, X.; Liu, Y.; Zhang, L. Research on Deformation Characteristics of Tunnel Box Culvert Structure under Different Construction Loads. IOP Conf. Ser. Earth Environ. Sci. 2021, 634, 012136. [Google Scholar] [CrossRef]
- Tarigan, J.; Nursyamsi, N.; Farhan, M. Precast box culvert analysis with direct load. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1122, 012020. [Google Scholar] [CrossRef]
- Smith, M. ABAQUS/Standard User’s Manual, Version 6.9; Dassault Systèmes Simulia Corp: Providence, RI, USA, 2009. [Google Scholar]
- Umravia, N.B.; Solanki, C.H. Numerical Analysis to Study Lateral Behavior of Cement Fly Ash Gravel Piles under the Soft Soil. Int. J. Eng. 2022, 35, 2111–2119. [Google Scholar] [CrossRef]
- Farahani, S.; Mohebkhah, A. Seismic Behavior of Direct Displacement-based Designed Eccentrically Braced Frames. Int. J. Eng. 2016, 29, 752–761. [Google Scholar]
- Mohsenzadeh, S.; Maleki, A.; Yaghin, M.A. Experimental and Numerical Study of Energy Absorption Capacity of Glass Reinforced SCC Beams. Int. J. Eng. 2019, 32, 1733–1744. [Google Scholar] [CrossRef]
- Wang Shuhong, A.J.; Jie, R.; Wang, P.; Liu, W. Simulation of force performance of precast rectangular box culvert and its potential failure mode. J. Northeast. Univ. 2018, 2, 260–265. [Google Scholar]
- Awwad, E.; Mabsout, M.; Sadek, S.; Tarhini, K. Finite element analysis of concrete box culverts. Comput. Civ. Build. Eng. 2000, 2000, 1051–1053. [Google Scholar]
- Gebremedhn, Z.; Qiao, G.; Li, J. Finite Element Modeling and Analysis of Precast Reinforced Concrete U-Shaped Box Culvert Using ABAQUS. Am. J. Civ. Eng. 2018, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- Uddin, Z.; Waqas, H.A.; Husnain, M.; Ibrahim, M.; Zaib, M.N.H. Design Optimization of Precast Reinforced Box Culvert with the Application of Finite Element Modeling and Analysis. In Proceedings of the 1st International Conference on Advances in Civil & Environmental Engineering, University of Engineering & Technology Taxila, Rawalpindi, Pakistan, 22–23 February 2022. [Google Scholar]
- Ozturk, B. Seismic behavior of two monumental buildings in historical Cappadocia region of Turkey. Bull. Earthq. Eng. 2017, 15, 3103–3123. [Google Scholar] [CrossRef]
- Hibbitt, D.; Karlsson, B.; Sorensen, P. ABAQUS Analysis User’s Manual; Abaqus: Providence, RI, USA, 2022. [Google Scholar]
- Xiao, Y.; Chen, Z.; Zhou, J.; Leng, Y.; Xia, R. Concrete plastic-damage factor for finite element analysis: Concept, simulation, and experiment. Adv. Mech. Eng. 2017, 9, 1687814017719642. [Google Scholar] [CrossRef]
- Ali, A.M. Manual RC Box Culvert Analysis and Designing. Int. J. Innov. Sci. Res. Technol. 2020, 5, 91–115. [Google Scholar] [CrossRef]
- ASTM C1577; Standard Specification for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers Designed According to AASHTO LRFD. ASTM International: West Conshohocken, PA, USA, 2005; p. 17.
- ASTM C1433; Standard Specifications for Precast Reinforced Concrete Box Sections for Culverts, Storm Drains, and Sewers. ASTM International: West Conshohocken, PA, USA, 2004; p. 25.
- Karalar, M.; Yeşil, M. Investigation on Seismic Behavior of Historical Tokatli Bridge under Near-Fault Earthquakes. Adv. Civ. Eng. 2021, 2021, 5596760. [Google Scholar] [CrossRef]
- Al-Ameedee, H.S.; Al-Khafaji, H.M. Improving the flexural behavior of RC beams strengthening by near-surface mounting. J. Mech. Behav. Mater. 2022, 31, 701–709. [Google Scholar] [CrossRef]
Details | Concrete | Steel |
---|---|---|
Density (Kg/m3) | 2400 | 7850 |
Compressive strength (MPa) | 26.8 | 450 |
Tensile strength (MPa) | 2.39 | 450 |
Poisson’s Ratio | 0.2 | 0.3 |
Modulus of elasticity (MPa) | 32,500 | 200,000 |
Post yielding modulus of elasticity (MPa) | - | 20,000 |
Parameters | Values |
---|---|
Dilation angle (ψ) | 40° |
Eccentricity (e) | 0.1 |
Ratio of biaxial to uniaxial compressive yield stress (σbo/σco) | 1.16 |
Coefficient determining the shape of the deviatoric cross-section (K) | 0.66 |
Viscosity parameter (μ) | 0 |
Mesh Size | Displacement | Force | |
---|---|---|---|
Concrete | Steel | mm | Tonnes |
200 | 200 | 5 | 35 |
100 | 100 | 3.45 | 27 |
50 | 50 | 4.5 | 24.0 |
20 | 20 | 4.5 | 23.9 |
Selected mesh size | 100 mm for concrete and steel | % Error in results of numerical analysis | 10 |
Parameter | Variables | Units |
---|---|---|
Strength of concrete | 26.8, 40, 52.4 | MPa |
Strength of steel | 280, 450, 550 | MPa |
Amount of steel | 100, 150, 200 | Percent |
Haunch geometry | square, triangular, and semicircular | - |
Parameter | Variable | Units | ||
---|---|---|---|---|
Strength of concrete | 26.8 | 40 | 52.4 | MPa |
Ultimate load | 208.3 | 233.3 | 262.1 | Tonnes |
Increase in capacity | 0 | 12 | 25.8 | Percent |
Strength of steel | 280 | 450 | 550 | MPa |
Ultimate load | 192.8 | 208.3 | 222 | Tonnes |
Increase in capacity | −7.4 | 0 | 6.6 | Percent |
Amount of steel | 100 | 150 | 200 | Percent |
Ultimate load | 208.3 | 242.8 | 280.1 | Tonnes |
Increase in capacity | 0 | 16.6 | 34.5 | Percent |
Haunch geometry | square | triangular | semicircular | - |
Ultimate load | 261.5 | 253.2 | 258.1 | Tonnes |
Increase in capacity | 25.6 | 21.6 | 23.9 | Percent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqas, H.A.; Waseem, M.; Riaz, A.; Ilyas, M.; Naveed, M.; Seitz, H. Influence of Haunch Geometry and Additional Steel Reinforcement on Load Carrying Capacity of Reinforced Concrete Box Culvert. Materials 2023, 16, 1409. https://doi.org/10.3390/ma16041409
Waqas HA, Waseem M, Riaz A, Ilyas M, Naveed M, Seitz H. Influence of Haunch Geometry and Additional Steel Reinforcement on Load Carrying Capacity of Reinforced Concrete Box Culvert. Materials. 2023; 16(4):1409. https://doi.org/10.3390/ma16041409
Chicago/Turabian StyleWaqas, Hafiz Ahmed, Muhammad Waseem, Abdullah Riaz, Muhammad Ilyas, Muhammad Naveed, and Hermann Seitz. 2023. "Influence of Haunch Geometry and Additional Steel Reinforcement on Load Carrying Capacity of Reinforced Concrete Box Culvert" Materials 16, no. 4: 1409. https://doi.org/10.3390/ma16041409
APA StyleWaqas, H. A., Waseem, M., Riaz, A., Ilyas, M., Naveed, M., & Seitz, H. (2023). Influence of Haunch Geometry and Additional Steel Reinforcement on Load Carrying Capacity of Reinforced Concrete Box Culvert. Materials, 16(4), 1409. https://doi.org/10.3390/ma16041409