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Abstract: The culverts are used to safely convey water under railways, highways, and overpasses.
They are utilized in drainage areas or water channels and in areas where the bearing capacity of
soil is low. The design and construction of this crucial infrastructure need to be improved to meet
contemporary demands of reliability and affordability. Precast reinforced box culverts are popular
alternatives as they ensure strength, durability, rigidity, and economy. This research seeks to develop
an effective and affordable design improvement procedure for a precast box culvert using modern
numerical tools. The Finite Element Method (FEM) based approach is used in studying the effects of
haunch geometry and additional steel reinforcement on the load-bearing capacity of box culverts. A
conventional box culvert is analyzed to create the numerical models in the Abaqus FEM code and to
investigate the load-bearing capacity of culverts with an expanded span. The outcomes of the study
reveal the critical places for stress concentration as well as the location of maximum damage. It is
found that haunch geometry and additional reinforcement at these critical places significantly affect
the load-carrying capacity of a culvert. From the comparison of capacity curves of models with and
without haunches and diagonal reinforcement, it is found that a 25% increase in load-carrying capacity
is achievable with the recommended changes. The proposed design improvement technique can be
employed for the cost-effective and safe design of a concrete box culvert with larger span lengths
and high water-flowing capacities. The findings of this study are expected to assist practitioners in
strength enhancement tasks of box culverts for increased structural stability and drainage efficiency.

Keywords: critical failure location; culverts; Finite Element Method (FEM); stress concentration

1. Introduction

A culvert is an essential part of a drainage system that helps to manage water flows
and provides a dependable course for water to pass through embankments of highways
and railways and helps prevent flooding [1]. There are two main types of culverts: rigid and
flexible. Rigid culverts, made of concrete, are designed to withstand bending loads with
minimal deformation. Flexible culverts, made of steel, are designed to interact with the soil
structure and transfer loads differently [2]. The suitability of a culvert type is determined
by its ease of construction and required drainage capacity. Box culvert structures are
economical since they have immensely high rigidity due to their monolithic action, and
these do not require isolated foundations. For small discharges, single-cell or box culverts
are used; for large discharges, multi-cell or multi-bin culverts are normally utilized [3]. The
top slab of box culverts is designed to support the live loads of a moving vehicle. Similarly,
the walls and base slab resist the earth pressure and hydrostatic pressure from outside and
from inside, respectively [4].
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Climate change and meteorological variations were particularly considered during
the original design of old hydraulic structures [5], and whenever there is heavy precipi-
tation, well-planned culverts can drain the water both quickly and effectively. However,
outdated or poorly designed culverts cause upstream floods and lead to critical losses and
damage [6]. Therefore, the capacity of culverts should be enhanced to ensure adequate
water discharging and load-carrying capabilities.

Efforts have been made in the past to develop cost-effective ways of enhancing the
drainage and load-carrying capacity of culverts. One approach is the hydraulic modifica-
tion of existing culverts to increase their capacity rather than completely rebuilding the
entire structure. Contemporary design standards assess the performance of a culvert by
computing the inflow and outflow of water based on established hydraulic theories while
the least efficient flow control is chosen based on anticipated headwater levels. However,
by implementing the better design improvement method, the flow and overall performance
of the culvert could be improved [7].

In recent years, significant research has been conducted on experimental and numerical
analysis and assessment of a box culvert. Crisfeld [8] analyzed the effects of cracking and
the failure stress response of a box culvert. Marzouk et al. [9] devised a technique for the
determination of the punching and deformation demand of a reinforced concrete (RC) box
culvert. Polak [10] employed three-dimensional (3D) shell elements for shear and flexural
strength assessment of RC box culverts.

Some researchers experimentally examined the effect of earth pressure on box culverts
and compared the results with existing theoretical models to offer design improvements [11,12].
Several academics have studied box culverts to understand the impact of soil-structure
interaction on the performance of box culverts [13,14]. Gong et al. carried out experimental
and numerical evaluations to study the failure mechanism of reinforced concrete box
culverts [15]. Anil and Ali [16] utilized FEM to validate the experimental findings of the
box culvert. Moradi et al. [17] validated the experimental works of Maximos et al. [18] and
Garg [19] through Finite Element Methods (FEM) and found that FEM tools can simulate
the structural behavior of culverts with reasonable accuracy and lesser physical effort.
Sinha and Sharma [20] analyzed the design of these small bridges with an emphasis on
the specifications for the Indian road congress. Anderson et al. [21] proposed seismic
design methods for the culvert. Esra [22] studied the response of long-span corrugated
steel box culverts under ultimate loads and proposed a method to adjust the design force
calculations. Kim et al. [23] investigated the failure mechanism of box culverts subjected
to corrosion by employing FEM. Zenagebriel et al. [24] performed an experimental and
numerical investigation on precast RC U-shaped box culverts to examine the effect of
various loading conditions both on the slab and sides of the culvert.

Recently, a smart precast box culvert equipped with fiber optic sensors was designed.
These sensors were able to detect and measure strain and stress on the culvert in order to
monitor structural health via the stress–strain measurement [25]. Additionally, recent work
has been focused on reducing the effects of load on box culverts under different loads of
construction such as culverts near tunnels or next to train tracks [26–28].

Despite these efforts, the studies related to design improvements and load-carrying ca-
pacity enhancement of culverts with various strengthening methods have not been explored
so far. Against this background, this paper uniquely presents a numerical assessment of a
non-conventional box culvert with a larger span length through FEM. The purpose is to
study the effects of various strengthening methods and haunch geometry with additional
reinforcement on the strength and drainage capacity enhancement of the culvert structure.
Furthermore, the FEM is used to simulate the structural behaviors of unstrengthened and
strengthened culverts in terms of their deformation response and stress concentrations at
critical places of the box culvert using Abaqus software [29].

FEM is an essential technique for predicting events that take place during the fab-
rication and operation of objects and structures. It has accelerated the advancements in
numerous fields of research, such as fluid mechanics, mechanics of structures, fracture
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mechanics, heat conduction, and biomechanics. It has been proven that this approach,
which is labor-intensive to build, calculate, and analyze models, is successful in resolving
problems of design improvements [30–32]. The Abaqus FEM code has been effectively used
in much culvert-related research for design and analysis [16,33–37].

The inner span of a box culvert is normally about 3.5 m [4]. For larger spans and
discharges, the conventional size becomes ineffective and calls for the design of multiple
sections thus leading to increased costs and construction efforts. A larger-span culvert
is therefore an economical alternative. However, its structural integrity and efficiency
need further exploration. This research provides design recommendations for larger-span
culverts using the FEM approach. The load-bearing capacity of conventional culverts
with an increased span length is evaluated, and the deformed shape, along with the stress
distribution of the reference culvert, is utilized to indicate the crucial zones of failure. At
these critical failure areas, additional reinforcement and haunch geometry are employed
as capacity improvement measures. The efficiency of various strengthening techniques is
evaluated on a larger span culvert to obtain the increased design capacity of a culvert for
supporting heavier loads and conveying large quantities of water. The adopted analysis
mechanism effectively utilizes the FEM techniques to analyze multiple scenarios and
conveniently identify an efficient design improvement method for a culvert structure. The
presented research work is expected to help practitioners in updating the existing design
and analysis techniques and provide an effective methodology for the design enhancement
of box culverts to increase both structural stability and drainage efficiency. The complete
scheme of this study is depicted in Figure 1.
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2. Materials and Methods
2.1. Model Description

The numerical model of the culvert was developed using the geometry and rein-
forcement details in the Abaqus FEM code for capacity enhancement. Moreover, the
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Concrete Damage Plasticity (CDP) model was used to simulate the constitutive behavior of
concrete [38] as shown in Figure 2.
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To simulate the inelastic behavior of concrete, the damaged plasticity model for
concrete combines the ideas of isotropic damaged elasticity with isotropic tensile and
compressive plasticity. The concrete damage model is a continuous, plasticity-based model.
The model is intended for applications in which low confining pressures and monotonic,
cyclic, and dynamic stresses are applied to the concrete. This model decomposes the total
strain ε into elastic εel and plastic strains εpl as follows.

ε = εel + εpl (1)

The following equations give the stress–strain relations under uniaxial compression
and tension:

σt = (1 − dt)Eo (εt − εpl
t ) (2)

σc = (1 − dc)Eo(εc − εpl
c ) (3)

where Eo is the initial (undamaged) elastic stiffness of the material, εt is total strain, εpl
c and

ε
pl
t are compression and tensile equivalent plastic strains, and dt and dc are tension and

compression damage parameters, respectively.
The two primary failure mechanisms inferred by the model are the compressive

crushing and tensile cracking of the concrete material. In the plastic-damage model, a
plastic-damage variable called “d” was defined. If plastic deformation occurs, the value of
this variable increases. The non-dimensional variable “d” has a maximum value of one.
When the plastic-damage variable attains its maximum value at a particular location in the
solid, the total damage takes place in the form of a macroscopic crack. The two damage
parameters for compressive and tensile behavior were used as functions of equivalent
plastic strains. The relationship between the tension damage variable and cracking strain
is shown in Figure 3. These parameters control the evolution of the yield surface and
are related to failure mechanisms under tension and compression loading. The damage
parameters can have values between zero and one, where one corresponds to a complete
loss of strength and zero to the undamaged material.
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Figure 3. Concrete tension damage vs. cracking strain.

The plastic flow of the material was simulated by flow parameters in the concrete
damaged plasticity model including dilation angle (ψ), flow potential eccentricity (e),
viscosity parameter (µ), and coefficient determining the shape of the deviatoric cross-
section (K). The damaged plasticity model assumes non-associated potential flow. The flow
potential G follows the Drucker-Prager hyperbolic function:

G =

√
(eσt0tanϕ)2 + q2 − p tanϕ (4)

where ϕ is the dilation angle measured in the p−q plane at high confining pressure, σt0 is
the uniaxial tensile stress at failure, and e is referred to as the eccentricity, the rate at which
the function approaches the asymptote. These continuous and smooth flow potential
parameters ensure that the flow direction is defined uniquely. The function asymptotically
approaches the linear Drucker-Prager flow potential at high confining pressure stress and
intersects the hydrostatic pressure axis at 90.

The biaxial behavior of concrete material was considered with an initial equi-biaxial
compressive yield stress (σbo) and an initial uniaxial compressive yield stress (σco) ratio
(σbo/σco). In the case of uniaxial loading, cracks move in a direction opposite to the stress
direction and the available load-carrying area decreases as a result of the growth of cracks
and rise in the effective stress. The effective load-carrying area is greatly diminished once a
significant quantity of material fails. The effective uniaxial cohesion stress at any instance
determines the size of the yield surface. The effective cohesion stress in compression and
tension is provided below:

σt =
σt

(1 − dt)
= Eo(εt − εpl

t ) (5)

σc =
σc

(1 − dc)
= Eo(εc − εpl

c ) (6)

The traffic and embankment loads were modeled as equally distributed loads on the
surface, but the soil and water loads were applied as depth-varying triangular loads. To
derive load defection curves and stress distributions, the analytical equations were solved
using the Abaqus solver of the Dassault Systèmes Simulia Corporation. The load–deflection
curve was used to compute the load-carrying capacity, and the stress distribution of the
structure was used to pinpoint the critical failure points. The geometry of the haunches and
additional steel reinforcement in the optimized culvert structure was utilized to increase
its capacity.
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2.2. Geometric Details

A typical RC box culvert with an extended span of more than 3.5 m was selected
as a reference model for this study. The box culvert’s structure is made up of a steel
reinforcement cage and a concrete box, as seen in Figure 4. The main and distribution
horizontal and vertical bars of the reinforcing cage had rebar sizes of 16 mm. The inner
span of the culvert is 4.0 m, and the wall and slab thickness are both preserved at 0.4 m.
The normal reinforcing spacing is 200 mm, and the concrete cover thickness is 40 mm.
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2.3. Materials and Elements

The material properties of concrete for the CDP model utilized are based on past
research [39]. These properties are listed in Table 1 for materials such as steel and concrete.
Table 2 details the plastic flow parameters of the CDP model.

Table 1. Material information of the study culvert [39].

Details Concrete Steel

Density (Kg/m3) 2400 7850
Compressive strength (MPa) 26.8 450

Tensile strength (MPa) 2.39 450
Poisson’s Ratio 0.2 0.3

Modulus of elasticity (MPa) 32,500 200,000
Post yielding modulus of elasticity (MPa) - 20,000
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Table 2. Plasticity flow parameters for CDP model [39].

Parameters Values

Dilation angle (ψ) 40◦

Eccentricity (e) 0.1
Ratio of biaxial to uniaxial compressive yield stress (σbo/σco) 1.16

Coefficient determining the shape of the deviatoric cross-section (K) 0.66
Viscosity parameter (µ) 0

The elements of concrete and steel are discretized for FEM using 3D wire elements
for reinforcement and three-dimensional solid elements for concrete components [24].
The components for reinforcement were 3D, 2 node (T3D2) elements. T3D2 elements
are used to simulate slender, line-like structures that only enable axial loading along the
element and do not support moments or forces that are perpendicular to the centerline.
The concrete elements were meshed with continuum, 3D, 8 node elements with reduced
integration (C3D8R). C3D8R elements are linear brick elements with fewer integration
points and are standard elements for stress analysis. A courser mesh would yield faster
solution convergence while a finer mesh would provide improved results with additional
computational cost. The mesh convergence was undertaken by varying the mesh sizes of
200, 100, 50, and 20 mm for concrete, as well as reinforcement, and the results are provided
in the section on modal validation.

2.4. Boundary Conditions, Interactions, and Loading

The bond between concrete and steel was taken into account using the embedded
region method of the Abaqus FEM numerical package. By evaluating the stiffness of the
reinforcement elements independently of the concrete elements, this method of modelling
the steel reinforcement resolves the mesh restriction issue that arises in the discrete and
smeared modelling of reinforcement. With this technique, the host element (concrete) and
the slave element are perfectly joined (steel rebar). Additionally, this approach allows
for the displacement of the surrounding concrete components to be compatible with the
displacement of the steel bars. When applied to complex models, the embedded method
is extremely helpful. However, this model expands the number of nodes and degrees of
freedom; consequently, it needs more run time and costs more to compute.

The culvert’s bottom end was modelled as a fixed foundation using fixed boundary
conditions. To simulate field conditions, the remaining surfaces received the necessary
weight of soil and water to properly constrain the model with the required boundary
conditions. With the appropriate loadings applied to the locations for lateral earth pressure
and hydrostatic pressure, the top surface was loaded with a 75 mm layer of asphalt and a
0.3 m layer of soil [40]. The loading conditions and model boundary conditions are shown
in Figure 5.

For the performance evaluation of various strengthening methods, the displacement-
controlled loading of 120 mm was applied at the reference point to obtain the capacity
curve. The motion of one group of nodes on the top slab was restricted by kinematic
coupling constraints to rigid body motion defined by a reference node. These restrictions
were helpful in controlling the deflection of one node, which was linked to a large number
of nodes (the “coupling” nodes). The specification of a reference node, coupling nodes, and
the constrained degrees of freedom at these nodes was provided for a kinematic coupling
constraint. A kinematic link allowed the reference point (RP-1) and top surface to interact
with one another. The load vs. displacement curve was then produced at the reference
position by this method.

The critical stress locations in the reference model were sought from the analysis
results. These crucial locations were subsequently retrofitted with various strengthening
configurations to identify the efficient approach to strength enhancement.
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3. Results and Discussion
3.1. Modal Validation

A numerical model of the culvert was prepared to indicate the effectiveness of the FEM
technique and modal validation. The model was constructed based on the experimental
work of Maximos et al. [18]. The experimental study used a full-scale precast box culvert for
testing as per the American Society of Testing and Materials (ASTM) standards [41–43]. The
specimen comprised dimensions of 2120 × 1220 × 203 mm where the first two dimensions
correspond to inner short- and long-span lengths of culverts, and the third dimension
represents the thickness of walls and slabs of a culvert. The tested segment was 1220 mm
long, and the reinforcement was provided as per ASTM C1577. The specimen was made
with a concrete compressive strength of 52.40 MPa and deformed bars of 470 MPa. The
box culvert was subjected to a wheel load at the top of the slab using a footprint plate, and
the structure was loaded until failure. The failure occurred when cracks developed in the
negative moment sections of the side walls at a load of 244.65 kN (24.5 Tonnes).

For the numerical modeling of the test specimen, the procedures mentioned in
Section 2.1, Section 2.3, and Section 2.4 were utilized to simulate the constitutive behavior
of the materials and apply the required modeling parameters. The numerical model of the
tested specimen for modal validation is shown in Figure 6. For modal calibration, the load
vs. deflection response of the structure with different mesh sizes of steel and concrete was
obtained at the point of application of loading. The results of this analysis are provided in
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Figure 7a, and Table 3 compares the ultimate load and deflection response of structures
with different mesh sizes. An analysis of Figure 7a and Table 3 revealed that the error in the
results was minimized when the mesh size was set at 50 mm. Moreover, as the mesh size
was decreased below 50 mm, the results remained consistent and insignificant variations
were observed. The results were not found to be mesh-sensitive due to the small size of
the elements; however, the size of the element chosen was slightly larger to reduce the
computational time. The corresponding element size of 100 mm was assigned to reinforcing
steel and concrete as an optimum arrangement between computational time and modal
performance [44]. The mesh size of 100 mm for concrete and steel components provided a
comparable ultimate capacity with respect to experimental output. From the experiment,
the test specimen exhibited an ultimate capacity of 24.5 tonnes while the FEM reported an
ultimate capacity of 27 tonnes at failure. Furthermore, the crack patterns observed in the
work of Maximos et al. and the FE model were also found to be similar as presented in
Figure 7b. Therefore, the resulting numerical modeling parameters showed good agreement
with the experimental results where an experiment/FEM ratio of 0.9 would be obtained
and an error value of about 10% could be expected.
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Table 3. Results of model calibration.

Mesh Size Displacement Force

Concrete Steel mm Tonnes

200 200 5 35
100 100 3.45 27
50 50 4.5 24.0
20 20 4.5 23.9

Selected mesh size 100 mm for concrete
and steel

% Error in results of
numerical analysis 10
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Figure 7. (a) Performance of numerical model with different mesh sizes and (b) crack patterns
observed in the experiment of Maximos et al. [18] (image used with the permission of publisher).

3.2. Parametric Analysis

The parametric analysis was conducted to evaluate the influence of various parameters
on the load-carrying capacity of an RC box culvert. The reference model detailed in
Section 2.2 was considered for the parametric study and a total of four parameters were
considered in the analysis including the strength of concrete, strength of steel reinforcement,
amount of steel reinforcement, and haunch geometry. The culvert size and shape, load
applications, and boundary conditions remained unchanged for this parametric analysis.
The details of the variables selected for parametric analysis are provided in Table 4.
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Table 4. Variables for parametric analysis.

Parameter Variables Units

Strength of concrete 26.8, 40, 52.4 MPa

Strength of steel 280, 450, 550 MPa
Amount of steel 100, 150, 200 Percent

Haunch geometry square, triangular, and semicircular -

The concrete strength was varied by using concrete mixes of different compressive
strengths. Three different concrete strengths of 26.8, 40, and 52.4 MPa were considered.
Three different steel strengths of 400, 470, and 550 MPa were included. Similarly, the influ-
ence of three different amounts of reinforcement was investigated. Similarly, the amount of
reinforcement in the reference model was increased by 150% to 200%. Additionally, the
haunch geometry was varied by changing the shape of the haunch. Three different haunch
configurations of 300 mm size were studied i.e., a square haunch, a triangular haunch, and
a semicircular haunch. The results of the parametric analysis are provided in Table 5 and
Figure 8 to identify the influence of each parameter on the ultimate load-carrying capacity
of a culvert structure.

Table 5. Results of parametric analysis.

Parameter Variable Units

Strength of concrete 26.8 40 52.4 MPa
Ultimate load 208.3 233.3 262.1 Tonnes

Increase in capacity 0 12 25.8 Percent

Strength of steel 280 450 550 MPa
Ultimate load 192.8 208.3 222 Tonnes

Increase in capacity −7.4 0 6.6 Percent

Amount of steel 100 150 200 Percent
Ultimate load 208.3 242.8 280.1 Tonnes

Increase in capacity 0 16.6 34.5 Percent

Haunch geometry square triangular semicircular -
Ultimate load 261.5 253.2 258.1 Tonnes

Increase in capacity 25.6 21.6 23.9 Percent
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A total of 12 analyses were undertaken for four parameters to evaluate their influence
on the load-carrying capacity of the RC box culvert. The concrete strength showed a
direct impact on the load-carrying capacity of the culvert. The high-strength concrete of
double strength could improve the load-carrying capacity by about 25%. Similarly, the steel
reinforcement strength and amount also showed a significant impact on the load-carrying
capacity of the culvert where the maximum reinforcement amount provided the highest
load-carrying capacity, followed by the moderate reinforcement, and the low reinforcement.
The 200% increase in the reinforcement amount enhanced the load-carrying capacity by
about 35%. Additionally, the haunch geometry showed a significant impact on the load-
carrying capacity of the culvert. The provision of haunch geometry could increase the
load-carrying capacity by about 20–25%. Overall, the amount of steel reinforcement and the
haunch geometry showed a significant impact on the load-carrying capacity of the culvert,
followed by the concrete and steel strength.

Since high-strength concrete and steel are more expensive than normal-strength rein-
forced concrete materials, the combined use of haunch geometry and reinforced concrete
material should be encouraged for cost-reduction and effective utilization of resources.
This can be realized by identifying the critically distressed areas in the structure where the
material performance should be improved.

To identify the efficient approach to strength enhancement, the identified crucial
locations were retrofitted with steel reinforcement configurations listed below.

• Case 1: Near Surface Mounted (NSM) L-shaped reinforcement bars;
• Case 2: NSM diagonal brackets;
• Case 3: Concrete haunches and diagonal reinforcement.

The rebar size of 16 mm was used for these additional reinforcements. The NSM bars
of cases 1 and 2 were embedded in concrete 20 mm from the surface. The spacing of all
additional rebars was maintained at 200 mm, similar to the main reinforcement. For case 3,
concrete haunches at a size of 0.3 m × 0.3 m were provided at the stress concentration
locations. Figure 9a,b show the arrangements of bars for cases 1 and 2, respectively. The
graphical representation of concrete haunches and diagonal bars of case 3 are presented
in Figure 10. The load–displacement curves of these reinforcement configurations were
compared, and their effectiveness was reported to suggest strength-enhancement strategies.
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3.3. Stress Distribution and Ultimate Load-Carrying Capacity

The stress distribution in the reference model under the induced loading is shown in
Figure 11. The corner intersection of the culvert’s top slab and walls revealed significant
stress concentrations in addition to other typical places. Severe deformation at mid-span
and in the joints of the walls and in the top slab was also observed. Excessive mid-
span deflection is observed once the load-carrying capacity of the slab is exhausted. The
deformation at joint locations further increased the mid-span deflection and reduced the
load-carrying capacity. The ultimate load-carrying capacity of the reference culvert was
calculated using the load–displacement curve shown in Figure 12. This figure depicts that
the culvert structure could bear the maximum load of 210 tonnes with a small deformation
of 22 mm. Once the load-resisting capacity of the structure is exhausted due to material
damage, the structure experiences extremely large deflections with reduced load-bearing
capabilities. The capacity of the reference structure was decreased to 100 tonnes until
a 60 mm deformation. The increase in capacity again appeared up to 160 tonnes with a
deformation of 80 mm because of the material hardening of steel rebars. No further increase
in load-carrying capacity was observed subsequently, and the structure showed continuous
large deformations. From Figure 11, it can be observed that the key stressed points are
at the intersection of the top slab and walls. Moreover, from the stress distribution and
deformed shape, it can be assumed that the strengthening of a culvert structure by means of
additional reinforcement and a haunch geometry at the critical position would significantly
improve the load-carrying capacity of a longer-span culvert. The strengthened culvert with
an extended span would provide better water-flowing capability and would be able to
withstand more loads.
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3.4. Influence of Additional Steel Reinforcement and Concrete Haunches

In order to carefully follow the advancements in structural behavior and overall capac-
ity, the influence of additional steel reinforcement and concrete haunches was investigated
by comparing the load-displacement curves of the reference model and strengthened
structures. The procedure described in the preceding section was utilized to determine
the capacity of the retrofitted structure. The improved capacity curves of different cases
are shown in Figure 12, next to the reference capacity curve. The results indicate that
the installation of L-shaped NSM reinforcement would not be beneficial to improve the
load-carrying capacity when compared to a diagonal bracket arrangement, which exhibited
slight improvement in the capacity of the reference structure. The concrete haunch structure
and additional diagonal reinforcements were found to be the most effective, providing a
capacity of 270 tonnes. The culvert structure, strengthened with concrete haunches and
diagonal bars, has the ability to increase the box culvert’s load-bearing capacity by around
25%. The difference between the peak load-carrying capacity of reference (208.3 tonnes)
and the strengthened culvert (270 tonnes) was used to obtain this amount.
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To summarize, this study evaluated the impact of different reinforcing methods on
the load-carrying capacity of a culvert with an increased span length, which has not been
undertaken to date. The NSM strengthening method has been adopted in past studies for
various structural components such as beams and has shown some beneficial effects in
enhancing structural performance [44]. However, in the case of culverts, this is a unique
study and the first of its kind. The performance of NSM reinforcement in the capacity
enhancement of a culvert was found to be insignificant compared to concrete haunch ge-
ometry and diagonal reinforcement. The current study uniquely identifies the performance
of concrete haunch geometry and the diagonal reinforcement-based strengthening method
and highlights the significance of the proposed design improvement method.

The haunch geometry and additional diagonal reinforcement played a crucial role in
enhancing the structural resistance at the location of stress concentration and preventing
the box culvert from excessive deformations. Figure 13 provides the comparison of induced
deflections of 200 mm in the slabs of reference and haunched culverts. At the mid-span loca-
tion, both reference and stiffened structures were forced with the same amount of deflection,
and hence the deflections were almost similar; however, the deflection is reduced towards
the wall and slab joint due to the provision of the haunch and diagonal reinforcement. The
haunch and diagonal reinforcement at the joints provided additional stiffness at the joint
location where the deflection in the stiffened structure is almost zero. The concrete haunch
and diagonal bars also played a vital role in reducing the stress concentration at the critical
joint location as shown in Figure 14. The quantity of elements experiencing a high number
of stresses in reference culverts is reduced by adopting retrofitting measures. The quantity
of elements with a smaller number of stresses is also increased in a retrofitted culvert
which indicates that the stresses are well distributed in different elements of joints with
lower absolute maximum values. The proposed methodological framework of the strength
enhancement of culverts systematically identified the weaker zones in the structure and
recommended the most effective strength enhancement method for culverts. The proposed
framework presented in Figure 1 could be repeated to achieve the desired load-carrying
capacity of a culvert structure with extended span lengths.
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4. Conclusions

This study evaluated the impact of different strengthening methods on improving the
load-carrying capacity of a culvert with increased span length and larger water-flowing
capacity. The presented work demonstrated the effectiveness of the FEM for incorporating
the required design improvements based on the output of the analysis. A typical culvert
structure with an enlarged span was numerically modeled to act as a reference structure.
NSM steel rebars and concrete haunches with diagonal strengthening methods were em-
ployed at critical failure locations of the structure for design improvement and strength
enhancement of the reference model. The selected strength enhancement approaches
had been commonly used in previous studies for various structural components, and the
present work uniquely explored the application of these methods on culvert structures.
The models with NSM reinforcement were found to be insignificant in the capacity en-
hancement of culverts compared to models where concrete haunch geometry and diagonal
reinforcement were considered. The load–deflection curves of the reference model and the
model strengthened with different strengthening methods were compared to obtain the
ultimate load-carrying capacities of different models. The deformed shapes of the structure
and stress distribution of a reference culvert and the culvert strengthened with the most
effective design improvement methods were also considered to highlight the performance
of a recommended approach of capacity enhancement. The following conclusions were
drawn from the current study:

• The link between the slab and the wall was found to have the highest likelihood of
stress concentrations;

• The NSM rebars of an L-shape and diagonal bracket slightly influence the capacity
and could be useful for small repairs and restoration works;

• The precast reinforced box culvert’s FE modelling indicates that adding diagonal
reinforcement and a haunch construction could appreciably enhance its capacity. A
25% increase in the ultimate load-carrying capacity was found when the ultimate
capacity of models with and without haunches was compared.
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To fully understand the relevance of the suggested design improvement technique for
cost-effective and safe design, the performance of box culverts with wider spans and under
seismic loadings must also be examined. Furthermore, the influence of other retrofitting
configurations, such as the Fiber Reinforced Polymer (FRP), to investigate strength enhance-
ments should also be explored.
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