Assessment of Condition Diagnosis System for Axles with Ferrous Particle Sensor
Abstract
:1. Introduction
2. Experimental Device and Method
3. Results and Discussion
3.1. Experimental Results
3.2. Problem of Condition Monitoring with Ferrous Particle Sensor in the Axle
3.3. Numerical Approach of Sensor Positioning
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lakal, N.; Shehri, A.H.; Brashler, K.W.; Wankhede, S.P.; Morse, J.; Du, X. Sensing technologies for condition monitoring of oil pump in harsh environment. Sens. Actuators A Phys. 2022, 346, 113864. [Google Scholar] [CrossRef]
- Garcia Marquez, F.P.; Tobias, A.M.; Pinar Perez, J.M.; Papaelias, M. Condition monitoring of wind turbines: Techniques and methods. Renew. Energy 2012, 46, 169–178. [Google Scholar] [CrossRef]
- Hong, S.H.; Jeon, H.G. Monitoring the conditions of hydraulic oil with integrated oil sensors in construction equipment. Lubricants 2022, 10, 228. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Kaneta, T.; Nishino, S. A review of monitoring construction equipment in support of construction project management. Front. Built Environ. 2022, 7, 632593. [Google Scholar]
- Du, L.; Zhe, J.; Carletta, J.; Veillette, R.; Choy, F. Real-time monitoring of wear debris in lubricating oil using a microfluidic inductive coulter counting device. Microfluid Nanofluidics 2010, 9, 1241–1245. [Google Scholar] [CrossRef]
- Gastops Long Live Equipment. MetalSCAN MS4000. Available online: http://www.gastops.com/wpcontent/uploads/2016/09/C008850_001.pdf (accessed on 16 December 2020).
- Du, L.; Zhe, J. A high throughput inductive pulse sensor for online oil debris monitoring. Tribol. Int. 2011, 44, 175–179. [Google Scholar]
- Du, L.; Zhe, J. Parallel sensing of metallic wear debris in lubricants using under-sampling data processing. Tribol. Int. 2012, 53, 28–34. [Google Scholar]
- Du, L.; Zhu, X.; Han, Y.; Zhao, L.; Zhe, J. Improving sensitivity of an inductive pulse sensor for detection of metallic wear debris in lubricants using parallel LC resonance method. Meas. Sci. Technol. 2013, 24, 75106. [Google Scholar]
- Wang, C.; Bai, C.; Yang, Z.; Zhang, H.; Li, W.; Wang, X.; Zheng, Y.; Ilerioluwa, L.; Sun, Y. Research on High Sensitivity Oil Debris Detection Sensor Using High Magnetic Permeability Material and Coil Mutual Inductance. Sensors 2022, 22, 1833. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Z.; Yuan, H.; Yu, K.; Gao, Y.; Liu, L.; Pan, X. Multichannel inductive sensor based on phase division multiplexing for wear debris detection. Micromachines 2019, 10, 246. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, T.; Wu, D.; Zhu, L.; Qing, X.; Xue, W. A new in situ coaxial capacitive sensor network for debris monitoring of lubricating oil. Sensors 2022, 22, 1777. [Google Scholar]
- Liu, Z.; Wu, S.; Raihan, M.K.; Zhu, D.; Yu, K.; Wang, F.; Pan, X. The optimization of parallel resonance circuit for wear debris detection by adjusting Capacitance. Energies 2022, 15, 7318. [Google Scholar]
- Wu, X.; Zhang, Y.; Li, N.; Qian, Z.; Liu, D.; Qian, Z.; Zhang, C. A new inductive debris sensor based on dual-excitation coils and dual-sensing coils for online debris monitoring. Sensors 2021, 21, 7556. [Google Scholar]
- Zeng, L.; Zhang, H.; Wang, Q.; Zhang, X. Monitoring of non-ferrous wear debris in hydraulic oil by detecting the equivalent resistance of inductive sensors. Micromachines 2018, 9, 117. [Google Scholar]
- Li, W.; Bai, C.; Wang, C.; Zhang, H.; Ilerioluwa, L.; Wang, X.; Yu, S.; Li, G. Design and research of inductive oil pollutant detection sensor based on high gradient magnetic field structure. Micromachines 2021, 12, 638. [Google Scholar] [CrossRef]
- Feng, S.; Yang, L.; Qiu, G.; Luo, J.; Li, R.; Mao, J. An inductive debris sensor based on high-gradient magnetic field. IEEE Sens. J. 2019, 19, 2879–2886. [Google Scholar]
- Wu, S.; Liu, Z.; Yu, K.; Fan, Z.; Yuan, Z.; Sui, Z.; Yin, Y.; Pan, X. A novel multichannel inductive wear debris sensor based on time division multiplexing. IEEE Sens. J. 2021, 21, 11131–11139. [Google Scholar]
- Hong, W.; Li, T.; Wang, S.; Zhou, Z. A general framework for aliasing corrections of inductive oil debris detection based on artificial neural networks. IEEE Sens. J. 2020, 20, 10724–10732. [Google Scholar] [CrossRef]
- Muthuvel, P.; George, B.; Ramadass, G.A. A highly sensitive in-line oil wear debris sensor based on passive wireless LC sensing. IEEE Sens. J. 2021, 21, 6888–6896. [Google Scholar] [CrossRef]
- Muthuvel, P.; George, B.; Ramadass, G.A. Magnetic-capacitive wear debris sensor plug for condition monitoring of hydraulic systems. IEEE Sens. J. 2018, 18, 9120–9127. [Google Scholar]
- Xu, C.; Zhang, P.; Wang, H.; Li, Y.; Lv, C. Ultrasonic echo wave shape features extraction based on QPSO-matching pursuit for online wear debris discrimination. Mech. Syst. Signal Process. 2015, 60, 301–315. [Google Scholar]
- Du, L.; Zhe, J. An integrated ultrasonic-inductive pulse sensor for wear debris detection. Smart Mater. Struct. 2013, 22, 25003. [Google Scholar] [CrossRef]
- Hamilton, A.; Cleary, A.; Quail, F. Development of a novel wear detection system for wind turbine gearboxes. IEEE Sens. J. 2014, 14, 465–473. [Google Scholar]
- Wu, T.; Wu, H.; Du, Y.; Kwok, N.; Peng, Z. Imaged wear debris separation for on-line monitoring using gray level and integrated morphological features. Wear 2014, 316, 19–29. [Google Scholar]
- Liu, Z.; Liu, Y.; Zuo, H.; Wang, H.; Chen, Z. An oil wear particles inline optical sensor based on motion characteristics for rotating machines condition monitoring. Machines 2022, 10, 727. [Google Scholar]
- Zhu, X.; Zhong, C.; Zhe, J. Lubricating oil condition sensors for online machine health monitoring—A review. Tribol. Int. 2017, 109, 473–484. [Google Scholar] [CrossRef]
- Jeon, H.G.; Kim, J.K.; Na, S.J.; Kim, M.S.; Hong, S.H. Application of condition monitoring for hydraulic oil using tuning fork sensor: A case on hydraulic system of earth moving machinery. Materials 2022, 15, 7657. [Google Scholar] [CrossRef]
- Fasihi, P.; Kendall, O.; Abrahams, R.; Mutton, P.; Qiu, C.; Schlafer, T.; Yan, W. Tribological properties of laser cladded alloys for repair of rail components. Materials 2022, 15, 7466. [Google Scholar] [CrossRef]
- Ren, Y.; Li, W.; Zhao, G.; Feng, Z. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput. Tribol. Int. 2018, 128, 96–103. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, X.; Li, H.; Luo, J.; Fong, S. An Inductive debris sensor for large-diameter lubricating oil circuit based on a high-gradient magnetic field. Appl. Sci. 2019, 10, 1546. [Google Scholar]
- Ma, L.; Zhang, H.; Qiao, W.; Han, X.; Zeng, L.; Shi, H. Oil metal debris detection sensor using ferrite core and flat channel for sensitivity improvement and high throughput. IEEE Sens. J. 2020, 20, 7303–7309. [Google Scholar] [CrossRef]
- Zeng, L.; Yu, Z.; Zhang, H.; Zhang, X.; Chen, H. A high sensitive multi-parameter micro sensor for detection of multi-contamination in hydraulic oil. Sens. Actuators A Phys. 2018, 282, 197–205. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Zheng, W.; Shi, H.; Wang, C.; Xie, Y. Investigation on the effect of debris position on the sensitivity of the inductive debris sensor. IEEE Sens. J. 2022. [Google Scholar] [CrossRef]
Items | Function | Items | Function |
---|---|---|---|
Working temperature | –40 to 180 °C | Weight | 25 g |
Working pressure | Max. 10 bar | Supply voltage | 4.5 V–32 V (DC) |
Fluid compatibility | Petroleum oils, General automotive fluids | Channel 1 | Fine particles (2.25 V–4.25 V) |
Sampling rate | 10 Hz | Channel 2 | Coarse particles (0.5 V–4.25 V) |
Properties | Method | Value |
---|---|---|
SAE Viscosity Grade | SAE J 300 | 10 W-30 |
Kinematic viscosity @ 40 °C | ISO 3104 | 60 mm2/s |
Kinematic viscosity @ 100 °C | ISO 3104 | 9.4 mm2/s |
Viscosity Index | ISO 2909 | 138 |
Density @ 15 °C | ISO 12185 | 882 kg/m3 |
Flash Point (COC) | ISO 2592 | 220 °C |
Pour Point | ISO 3016 | −42 °C |
Case | Standard | Case-1 | Case-2 | Case-3 | Case-4 |
---|---|---|---|---|---|
Voltage | 1.0 V | 1.02 V | 1.02 V | 1.02 V | 1.0 V |
Items | Condition | Items | Condition |
---|---|---|---|
Inlet | Inlet velocity 0.02 m/s | Outlet | Outflow |
Number of particles | 100 | Particle diameter | 10 μm |
Shape of particle | Sphere | Material of particle | Steel |
Particle relative permeability | 1000 | Particle density | 8030 kg/m3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.-H.; Jeon, H.-G. Assessment of Condition Diagnosis System for Axles with Ferrous Particle Sensor. Materials 2023, 16, 1426. https://doi.org/10.3390/ma16041426
Hong S-H, Jeon H-G. Assessment of Condition Diagnosis System for Axles with Ferrous Particle Sensor. Materials. 2023; 16(4):1426. https://doi.org/10.3390/ma16041426
Chicago/Turabian StyleHong, Sung-Ho, and Hong-Gyu Jeon. 2023. "Assessment of Condition Diagnosis System for Axles with Ferrous Particle Sensor" Materials 16, no. 4: 1426. https://doi.org/10.3390/ma16041426
APA StyleHong, S. -H., & Jeon, H. -G. (2023). Assessment of Condition Diagnosis System for Axles with Ferrous Particle Sensor. Materials, 16(4), 1426. https://doi.org/10.3390/ma16041426