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Abstract: MXene-supported single-atom catalysts (SACs) for water splitting has attracted extensive
attention. However, the easy aggregation of individual metal atoms used as catalytic active centers
usually leads to the relatively low loading of synthetic SACs, which limits the development and
application of SACs. Herein, by performing first-principles calculations for Pt and 3d transition metal
single atoms immobilized on a two-dimensional (2D) Mo2TiC2O2 MXene surface, we systematically
studied the performance of heterogeneous dual-atom catalysts (h-DACs) in hydrogen evolution
reaction (HER) and oxygen evolution reaction (OER). Significantly, h-DACs exhibit higher metal atom
loading and more flexible active sites compared to SACs. Benefiting from these features, we found that
Pt/Cu@Mo2TiC2O2 heterogeneous DACs exhibits excellent HER activity with ultra-low overpotential
|∆GH

∗| (0.04 eV), lower than the corresponding Pt@Mo2TiC2O2 (0.14 eV) and Cu@Mo2TiC2O2

(0.33 eV) SACs, and even lower than that of Pt (0.09 eV). Meanwhile, Pt/Ni@Mo2TiC2O2 exhibits
superior OER activity with ultra-low overpotential ηOER (0.38 V), lower than that of Pt@Mo2TiC2O2

(1.11 V) and Ni@Mo2TiC2O2 (0.57 V) SACs, and even lower than that of RuO2 (0.42 V) and IrO2

(0.56 V). Our finding paves the way for the rational design of h-DACs for HER and OER with excellent
activity, which provides guidance for other catalytic reactions.

Keywords: first-principles calculation; dual-atom catalysts (DACs); hydrogen evolution reaction;
oxygen evolution reaction; electrocatalyist

1. Introduction

Water splitting technology is debated as the most prospective and sustainable way to
produce hydrogen and oxygen, which involves hydrogen evolution reaction (HER) and
oxygen evolution reaction (OER) [1–8]. Up to now, the expensive noble metals or their
oxides are still deemed as the best choice to propel these reactions, where Pt is used for HER
and RuO2/IrO2 is used for OER [9–11]. However, the expensiveness and poor durability
restrict their development and commercial applications. Hence, it is of great importance
and imminent to explore non-noble metal catalysts with high activity and stability to make
the water splitting reaction economical and energy-saving.

Since MXenes was discovered in 2011 [12], a new family of two-dimensional (2D)
material rich in early-transition metal carbides, nitrides, or carbonitrides, it has attracted
enormous interest in the field of electrocatalysis due to its large specific surface area, high
stability, and excellent electronic and thermal conductivity [13–21]. MXenes can generally
be synthesized by selective removal of the layer of A elements from its parent phase MAX
using various methods. Its general chemical formula can be written as Mn+1AXn, where M
represents the early transition metals, A is the elements of the group IIIA or IVA, and X
is the carbon and/or nitrogen atoms. Numerous experiments and theoretical calculations
have confirmed that the outer layers of the nanosheet MXenes are usually terminated by
several kinds of functional groups, such as OH, O, or F [22–26]. Surface functional groups
can improve the stability of the MXenes substrate, effectively prevent the inner metal layers
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from being oxidized, and even ameliorate the interaction strength between the MXenes
substrate and hydrogen, thus increasing HER activity. However, the functional groups
greatly weaken the adsorption strength with OER intermediates (OH∗, O∗, and OOH∗),
which is unfavorable for OER [27,28].

Single-atom catalysts (SACs) have received extensive attention in electrocatalysis
in the past few years, owing to their fully exposed active sites, maximum atom utiliza-
tion, extraordinary reaction selectivity, and adjustable surface electronic structure [29–34].
Particularly, it has been well confirmed that the SACs composed of a single metal atom
anchored on MXenes substrate have shown great application potential in both HER and
OER [2,28,35]. In these electrochemical reactions, the single metal atom mainly plays two
roles, acting as the active center and acting as a cocatalyst to regulate the local surface
electronic structures. However, due to the significantly increased surface free energy of
SACs, the single atom embedded on the substrates would spontaneously aggregate to
form nanoclusters in the preparation and catalytic process, which greatly reduces catalytic
active sites. This shortcoming results in relatively low-density single-atom loading in the
currently reported synthesized SACs, generally lower than 1.5 wt% [36–40]. Therefore, it is
of great significance to increase the loading capacity of single atoms while maintaining the
unique properties of SACs.

Heterogeneous double-atom catalysis (h-DACs) containing two different metal atoms
overcomes the drawback of low SACs loading. Moreover, owing to the synergistic effect
of two metal atoms, a large amount of unsaturated coordination, and more flexible active
sites, h-DACs have shown great application prospects in various catalytic reactions, such
as the hydrogen evolution reaction, oxygen reduction reaction, and nitrogen reduction
reaction [41–45]. However, the underlying mechanism for the synergistic effect between
diatoms on h-DACs to enhance the performance of HER and OER is not very clear, which
is still an urgent issue to be addressed at present.

Herein, by means of first-principles calculations, we systematically investigated the
HER and OER catalytic activities of the h-DACs composed of a noble metal Pt atom and
a non-noble transition metal atom (e.g., 3d: Ti, V, Cr, Fe, Co, Ni, Cu, and Zn) supported
on the ordered double transition metal MXene (Mo2TiC2O2) substrate, which has been
successfully prepared experimentally [46]. We confirmed that the synergistic effect of
h-DACs effectively improves the catalytic activity for HER and OER, and gained a deeper
understanding of the reaction mechanism. The result showed that Pt/Cu@Mo2TiC2O2 h-
DACs exhibits higher catalytic activity than that of the corresponding Pt@Mo2TiC2O2 SACs
and Cu@Mo2TiC2O2 SACs. Pt/Ni@Mo2TiC2O2 h-DACs has great potential in OER, and its
OER performance was superior to that of Pt@Mo2TiC2O2 SACs and Ni@Mo2TiC2O2 SACs.
Our work extends the exploration of SACs to h-DACs and lays a referential foundation for
designing excellent OER and HER catalysts.

2. Materials and Methods

Spin-polarized density functional theory (DFT) calculations based on first principles
were implemented using the Vienna ab initio simulation package code (VASP) [47]. The
Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation
(GGA) was applied to describe the electron exchange-correlation interactions [48,49]. The
core-valence interactions were described by the projector-augmented plane-wave (PAW)
method and the cutoff energy of plane-wave basis was set to be 500 eV in all the compu-
tations. The convergence tolerances for residual force and energy on each atom during
the structure relaxation were set to 0.01 eV/Å and 10−5 eV, respectively. Monkhorst-Pack
k-mesh grid settings of 3 × 3 × 1 and 7 × 7 × 1 were used to sample the 2D Brillouin
zone for geometry optimizations and electronic structure calculations, respectively. In all
DFT calculations, the vacuum layer thickness in the z-direction was set to 25 Å to avoid
interlayer interactions and the van der Waals interaction was considered by using the
empirical correction DFT-D3 approach [50]. The VASPKIT code was used to postprocess
the data calculated by VASP [51].
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The Gibbs free energy change (∆G) of each elementary reaction step of the HER
and OER was calculated adopting the computational hydrogen electrode (CHE) method
proposed by Nørskov et al. [52]. According to this method, the ∆G of each elementary
reaction step can be expressed as

∆G = ∆E + ∆ZPE − T∆S + ∆GpH + ∆GU (1)

where ∆E is the total energy change of the reaction obtained from DFT calculations; ∆ZPE
and T∆S are the zero-point energy change and the entropy change, respectively; and
T is temperature and was set to 298.15 K (room temperature) in this work. Moreover,
∆GU = −eU and ∆GpH = −kBTln[H+] = pH × kBTln10 represent the influence of electrode
potential (U) and pH on the ∆G in the electrochemical elementary step, respectively, where
e is the elementary charge and kB is the Boltzmann constant. In this work, the values of
both U and pH were assumed to be zero.

The overall reaction scheme of HER could be described as

H+ (aq) + e− + ∗ → H∗ (2)

H∗ → 0.5 H2 (g) + ∗ (3)

including three parts, namely the initial state H+ (aq) + e−, the intermediate adsorbed
H∗, and the final product of 0.5H2 (g). Here, ∗ represents the preferable adsorption site
of intermediates on the catalyst surface, and g and aq refer to the gas phase and aqueous
solution, respectively. In general, the overpotential is used to evaluate the catalytic activity
of the catalyst in the electrocatalysis calculations. As for HER, the Gibbs free energy of
hydrogen adsorption (|∆GH

∗|) is usually selected as the overpotential to judge the catalytic
activity. In general, the catalysts with |∆GH

∗| values of less than 0.2 eV are considered to
have high HER catalytic activity, and the closer the value of |∆GH

∗| is to 0, the higher the
HER catalytic activity.

In the acidic environment, the overall OER could be expressed in Equation (4), and
the elementary reactions are listed in Equation (5) to Equation (8) [53]:

H2O (l)→ O2 (g) + 4H+ + 4e− (4)

H2O (l) + ∗ → OH∗ + H+ + e− (5)

OH∗ → O∗ + H+ + e− (6)

H2O (l) + O∗ → OOH∗ + H+ + e− (7)

OOH∗ → O2 (g) + H+ + e− (8)

Here, ∗ represents the active site on the catalyst surface, and g and l refer to the gas
phase and the liquid phase, respectively.

The free energy changes for the four elementary OER could be expressed as ∆G1 =
∆GOH

∗, ∆G2 = ∆GO
∗ − ∆GOH

∗, ∆G3 = ∆GOOH
∗ − ∆GO

∗, and ∆G4 = 4.92 − ∆GOOH
∗.

For the OER, the overpotential can be obtained from the following equation:

ηOER = max{∆G1, ∆G2, ∆G3, ∆G4}/e − 1.23 (9)

3. Results and Discussion
3.1. Stability of MXene-Supported Catalysts

First, the adsorption behavior of the single metal Pt embedded on a Mo2TiC2O2 sub-
strate was investigated. As far as we know, the O-terminated Mo2TiC2 system (denoted
as Mo2TiC2O2) has been successfully prepared experimentally [46]. Given the weak in-
teraction between the O-terminal functional groups and the OER reactive intermediates
(OH∗, O∗, and OOH∗), it is crucial to embed metal atom active sites on the surface of
Mo2TiC2O2 to enhance the ability to activate the reactive intermediates. Based on previous
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studies, MXene-supported mono-metal Pt catalysts generally exhibit superior HER and
OER catalytic activity [53–55]. Here, the Pt@Mo2TiC2O2 structure was first constructed
by considering three possible Pt atom anchoring sites: fcc (F), top (T), and hcp (H) (as
shown in Figure 1). Through DFT calculations, we found that for the three constructed
Pt@Mo2TiC2O2 SACs, the top site structure was the most stable, indicating that adsorption
is more likely to occur at this site. To evaluate the catalytic activity of Pt@Mo2TiC2O2 SACs
for the HER and OER, the Gibbs free energy difference of elementary reaction steps for
HER (∆GH

∗) and OER (∆GOH
∗, ∆GO

∗, ∆GOOH
∗) processes were calculated separately, as

shown in Figure 1b,c. It is not difficult to see that Pt@Mo2TiC2O2 SACs has superior HER
catalytic performance with a low |∆GH

∗| value of 0.14 eV, close to that of Pt (0.09 eV) [11].
However, the catalytic performance of the OER is not as good as expected, showing a larger
overpotential barrier of 1.11 V. Then, by simultaneously loading a 3d transition metal atom
(TM = Ti, V, Cr, Fe, Co, Ni, Cu, and Zn) on the surface of Pt@Mo2TiC2O2 to adjust the elec-
tronic structure, it is expected to effectively improve the catalytic activity of Pt@Mo2TiC2O2
for HER and OER. Here, the constructed structures were called heterogeneous double-atom
catalysts (denoted as Pt/TM@Mo2TiC2O2 h-DACs).

Materials 2023, 16, x FOR PEER REVIEW 4 of 11 
 

 

to enhance the ability to activate the reactive intermediates. Based on previous studies, 
MXene-supported mono-metal Pt catalysts generally exhibit superior HER and OER cat-
alytic activity [53–55]. Here, the Pt@Mo2TiC2O2 structure was first constructed by consid-
ering three possible Pt atom anchoring sites: fcc (F), top (T), and hcp (H) (as shown in 
Figure 1). Through DFT calculations, we found that for the three constructed 
Pt@Mo2TiC2O2 SACs, the top site structure was the most stable, indicating that adsorption 
is more likely to occur at this site. To evaluate the catalytic activity of Pt@Mo2TiC2O2 SACs 
for the HER and OER, the Gibbs free energy difference of elementary reaction steps for 
HER (ΔGH∗) and OER (ΔGOH∗, ΔGO∗, ΔGOOH∗) processes were calculated separately, as 
shown in Figure 1b,c. It is not difficult to see that Pt@Mo2TiC2O2 SACs has superior HER 
catalytic performance with a low |ΔGH∗| value of 0.14 eV, close to that of Pt (0.09 eV) [11]. 
However, the catalytic performance of the OER is not as good as expected, showing a 
larger overpotential barrier of 1.11 V. Then, by simultaneously loading a 3d transition 
metal atom (TM = Ti, V, Cr, Fe, Co, Ni, Cu, and Zn) on the surface of Pt@Mo2TiC2O2 to 
adjust the electronic structure, it is expected to effectively improve the catalytic activity of 
Pt@Mo2TiC2O2 for HER and OER. Here, the constructed structures were called heteroge-
neous double-atom catalysts (denoted as Pt/TM@Mo2TiC2O2 h-DACs). 

 
Figure 1. (a) Top view and front view of the Mo2TiC2O2 and three different single-atom anchoring 
sites: fcc (F), top (T), and hcp (H). Calculated free energy profile of Pt@Mo2TiC2O2 SACs for (b) HER 
and (c) OER; the red line represents the energy-consuming step. The “∗” symbol represents the ad-
sorption site. a, b and c are the three directional axes of the cell structure, respectively. 

Figure 2 illustrates schematic diagrams of the TM atomic possible adsorption sites on 
the surface of Pt@Mo2TiC2O2, namely Site I, Site II, Site III, Site IV, Site V, and Site VI. The 
Pt/TM@Mo2TiC2O2 h-DAC structures with the lowest surface adsorption energies are de-
picted in Figure S1. Talking the Pt/Cu@Mo2TiC2O2 h-DAC structure as an example, we 
considered six kinds of possible adsorption sites of the Cu atom, obtained five systems 

Figure 1. (a) Top view and front view of the Mo2TiC2O2 and three different single-atom anchoring
sites: fcc (F), top (T), and hcp (H). Calculated free energy profile of Pt@Mo2TiC2O2 SACs for (b) HER
and (c) OER; the red line represents the energy-consuming step. The “∗” symbol represents the
adsorption site. a, b and c are the three directional axes of the cell structure, respectively.

Figure 2 illustrates schematic diagrams of the TM atomic possible adsorption sites
on the surface of Pt@Mo2TiC2O2, namely Site I, Site II, Site III, Site IV, Site V, and Site VI.
The Pt/TM@Mo2TiC2O2 h-DAC structures with the lowest surface adsorption energies are
depicted in Figure S1. Talking the Pt/Cu@Mo2TiC2O2 h-DAC structure as an example, we
considered six kinds of possible adsorption sites of the Cu atom, obtained five systems with
stable structure after structure optimization, and then selected the configuration with the
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lowest total energy for subsequent calculations (see Figure S1). In order to further evaluate
the dynamic stability of the above selected systems, ab initio molecular dynamics (AIMD)
simulations were implemented at 298 K for 10 ps. For the AIMD simulations, the change in
bond length (L) between Cu and Pt atoms and the total energy of h-DACs with time were
used to verify the thermal stability (as shown Figure 2b). It can be easily observed that the
fluctuation of bond length and total energy was small, indicating that the structure shows
high thermodynamic stability.
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3.2. HER Catalytic Activity of h-DACs

We first investigated the catalytic activity of Pt/TM@Mo2TiC2O2 h-DACs for the HER.
Similarly, adequate testing was also required to determine the stable adsorption site of H
protons on the h-DACs’ surface. For h-DACs, H protons generally tend to be adsorbed
on the upper end of O or embedded transition metals, where the embedded transition
metal atoms play the role of cocatalyst and catalyst, respectively. Here, Pt/Cu@Mo2TiC2O2
h-DACs were also taken as an example to illustrate. As displayed in Figure 3, there are six
possible H adsorption sites on the Pt/Cu@Mo2TiC2O2 h-DACs’ surface, namely Site I, Site
II, Site III, Site IV, Site V, and Site VI. The possible adsorption sites of H protons in other
studied h-DAC systems are shown in Figure S2. Then, the HER catalytic activity calcula-
tions were conducted on these sites. The calculated free energy for H∗ adsorption (∆GH

∗)
of all the studied h-DACs at different active sites are presented in Table S1 and Figure 3b.
It can be seen from Figure 3b that the |∆GH

∗| values of Pt/Cu@Mo2TiC2O2 h-DACs at
Site II, Pt/Co@Mo2TiC2O2 h-DACs at Site IV, and Pt/V@Mo2TiC2O2 h-DACs at Site I are
less than 0.2 eV, manifesting excellent HER catalytic activity. It should be noted that the Pt
and Cu atoms on Pt/Cu@Mo2TiC2O2 (Site II) and Pt and Co atoms on Pt/Co@Mo2TiC2O2
(Site IV) are cocatalysts that act as an electron catalytic promoter, while the V atom on
Pt/V@Mo2TiC2O2 (Site I) is a catalyst that participates in the catalytic reactions. Partic-
ularly, Pt/Cu@Mo2TiC2O2 has an ultra-low |∆GH

∗| value of 0.04 eV, even better than
that of benchmark Pt (0.09 eV), which probably serves as a promising HER catalyst. For
comparison, the HER catalytic activities of the corresponding Pt@Mo2TiC2O2 SACs and
Cu@Mo2TiC2O2 SACs were also tested. The stable H∗ adsorption sites and the correspond-
ing free energy for H∗ adsorption (∆GH

∗) were displayed in Figure S3. The lowest |∆GH
∗|

values of all adsorption sites for Pt@Mo2TiC2O2 (Site III) and Cu@Mo2TiC2O2 (Site IV) are
0.14 eV and 0.33 eV, respectively, significantly higher than 0.04 eV for Pt/Cu@Mo2TiC2O2,
which further indicates that the introduction of double atoms improves the HER catalytic
activity of the corresponding SACs.
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3.3. OER Catalytic Activity of h-DACs

We then continued to investigate the OER catalytic activity of these Pt/TM@Mo2TiC2O2
h-DACs. The widely accepted entire OER process on SACs can be divided into four stages
(see Equations (5)–(8)), which involve three intermediate states (OH∗, O∗, and OOH∗). How-
ever, for h-DACs, the OER behavior is more complicated than that of SACs due to the more
flexible catalyst active sites. Here, we chose Pt/Ni@Mo2TiC2O2 h-DACs as an example to
illustrate in detail. All possible reaction paths occurring on Pt/Ni@Mo2TiC2O2 h-DACs
are displayed in Figure S4, where the energy-favored reaction pathways are marked with
red lines. The optimal reaction pathways can be summarized as shown in Figure 4a and
described as follows: firstly, the OH∗ adsorption state was more inclined to spontaneously
adsorb to the Pt atom in bare Pt/Ni@Mo2TiC2O2 h-DACs accompanied by a −0.62 eV
adsorption free energy change. Then, the second OH∗ was then adsorbed to the Ni atom
with the adsorption free energy change of 0.42 eV. Subsequently, the OH∗ adsorption state
on the Ni atom was preferentially transformed into the O∗ adsorption state, which requires
a 1.09 eV reaction energy and releases proton and electron pairs at the same time. Next, it
is interesting to note that the subsequent reactions tend to occur only on the Ni single atom
to complete the whole four-electron OER reaction process, with the Gibbs free energies of
1.57 eV, 1.61 eV, 1.40 eV, and 0.34 eV required for each elementary reaction separately. In
summary, the entire OER on Pt/Ni@Mo2TiC2O2 h-DACs can be divided into two stages,
namely the 3e− reaction occurring on Ni and Pt atoms (Stage I) and the cyclic OER along
the 4e− reaction pathways involving only an Ni atom (Stage II). The OER reaction path-
ways of other studied Pt/TM@Mo2TiC2O2 h-DAC systems are displayed in Figures S5–S11,
respectively. From Figure 4b,c, for Pt/Ni@Mo2TiC2O2 h-DACs, the formation of OOH∗

on the Ni atom is the most energy-consuming step, showing the maximum step distance.
Furthermore, we found that Pt/Cr@Mo2TiC2O2 h-DACs and Pt/Ni@Mo2TiC2O2 h-DACs
exhibited excellent OER catalytic activity (see Figure 4c and Figure S12), with low over-
potentials of 0.49 eV and 0.38 eV, respectively. Especially for Pt/Ni@Mo2TiC2O2 h-DACs,
the ultra-low overpotential of 0.38 V was obviously lower than the corresponding data for
Pt@Mo2TiC2O2 SACs (1.11 V) and Ni@Mo2TiC2O2 SACs (0.57 V), and even lower than that
of RuO2 (0.42 V) and IrO2 (0.56 V) [10]. Therefore, Pt/Ni@Mo2TiC2O2 h-DACs is promising
excellent OER catalysts. Our findings show that the introduction of double atoms can also
ameliorate the OER catalytic activity of the corresponding SACs.



Materials 2023, 16, 1457 7 of 11Materials 2023, 16, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. (a) The configurations of oxygenated intermediates in energy-favored reaction pathways 
of OER on Pt/Ni@Mo2TiC2O2 h-DACs. The Gibbs free energy diagrams of reaction mechanisms for 
(b) Stage I and (c) Stage II and Pt@Mo2TiC2O2 SACs and Ni@Mo2TiC2O2 SACs. The underlined num-
ber represents the most energy-consuming step. The “∗” symbol represents the adsorption site. a, b 
and c are the three directional axes of the cell structure, respectively. 

It is known that good conductivity is the prerequisite for the operation of electrocat-
alysts, which can be directly observed from its electronic structure. In order to deeply 
understand the catalytic activity of h-DACs for the OER, we further calculated their elec-
tronic density of states (DOS). As shown in Figure S13b, the average DOS per atom states 
of Pt/Ni@Mo2TiC2O2 h-DACs and Pt/Cr@Mo2TiC2O2 h-DACs with high OER catalytic ac-
tivity is continuous at the Fermi level, implying that they are metal-conductive and con-
ducive to electron transport. For the Pt/Ni@Mo2TiC2O2 h-DACs, the adsorption of OH∗ in 
the first elementary step and formation of O∗ in the second elementary step are the main 
differences from Ni@Mo2TiC2O2 SACs (as shown in Figure 4c). Therefore, we focus on 
these differences in the subsequent discussion. It is well known that the total Gibbs free 
energy change for a complete OER progress is 4.92 eV, so the free energy differences for 
each elementary step of the most ideal OER catalyst should be 1.23 eV. For Ni@Mo2TiC2O2 
SACs, the sum of the Gibbs free energy change of the first two elementary steps is 1.48 eV, 
which makes the subsequent two elementary steps need to share the free energy differ-
ence of 3.44 eV, resulting in a large overpotential for OER. This situation was well amelio-
rated on the Pt/Ni@Mo2TiC2O2 h-DACs, in which the structure of O-Pt plays an important 
role. This can be understood from the perspective of d-band center theory. When the ad-
sorbate OH∗ binds to the Ni metal atom, the p orbital of the O atom would couple with 
the d orbital of the Ni atom to form a bonding state and an anti-bonding state (as shown 
in Figure 5a). The electrons occupying the bonding state make the whole system more 
stable; on the contrary, the occupation in the anti-bonding state makes the system unsta-
ble. The higher (lower) the d-band center of a metal site, the more (less) electrons filled 
into anti-bonding state, and the stronger (weaker) the affinity with the adsorbate [56]. It 
can be seen that the synergistic effects of the Pt atom and Ni atom reduce the d-band center 
of the Ni metal site, especially that the co-adsorbed ∗O-Pt/Ni@Mo2TiC2O2 structure further 
reduces the position of the d-band center of the Ni metal site (See Figure 5b), which leads 
to a decrease in the adsorption energy bound to the OH adsorbate. Thus, the free energy 
change in the first two elementary steps of the OER was effectively improved, thereby 

Figure 4. (a) The configurations of oxygenated intermediates in energy-favored reaction pathways of
OER on Pt/Ni@Mo2TiC2O2 h-DACs. The Gibbs free energy diagrams of reaction mechanisms for (b)
Stage I and (c) Stage II and Pt@Mo2TiC2O2 SACs and Ni@Mo2TiC2O2 SACs. The underlined number
represents the most energy-consuming step. The “∗” symbol represents the adsorption site. a, b and
c are the three directional axes of the cell structure, respectively.

It is known that good conductivity is the prerequisite for the operation of electrocat-
alysts, which can be directly observed from its electronic structure. In order to deeply
understand the catalytic activity of h-DACs for the OER, we further calculated their elec-
tronic density of states (DOS). As shown in Figure S13b, the average DOS per atom states
of Pt/Ni@Mo2TiC2O2 h-DACs and Pt/Cr@Mo2TiC2O2 h-DACs with high OER catalytic
activity is continuous at the Fermi level, implying that they are metal-conductive and
conducive to electron transport. For the Pt/Ni@Mo2TiC2O2 h-DACs, the adsorption of
OH∗ in the first elementary step and formation of O∗ in the second elementary step are the
main differences from Ni@Mo2TiC2O2 SACs (as shown in Figure 4c). Therefore, we focus
on these differences in the subsequent discussion. It is well known that the total Gibbs free
energy change for a complete OER progress is 4.92 eV, so the free energy differences for
each elementary step of the most ideal OER catalyst should be 1.23 eV. For Ni@Mo2TiC2O2
SACs, the sum of the Gibbs free energy change of the first two elementary steps is 1.48 eV,
which makes the subsequent two elementary steps need to share the free energy difference
of 3.44 eV, resulting in a large overpotential for OER. This situation was well ameliorated
on the Pt/Ni@Mo2TiC2O2 h-DACs, in which the structure of O-Pt plays an important role.
This can be understood from the perspective of d-band center theory. When the adsorbate
OH∗ binds to the Ni metal atom, the p orbital of the O atom would couple with the d orbital
of the Ni atom to form a bonding state and an anti-bonding state (as shown in Figure 5a).
The electrons occupying the bonding state make the whole system more stable; on the
contrary, the occupation in the anti-bonding state makes the system unstable. The higher
(lower) the d-band center of a metal site, the more (less) electrons filled into anti-bonding
state, and the stronger (weaker) the affinity with the adsorbate [56]. It can be seen that the
synergistic effects of the Pt atom and Ni atom reduce the d-band center of the Ni metal
site, especially that the co-adsorbed ∗O-Pt/Ni@Mo2TiC2O2 structure further reduces the
position of the d-band center of the Ni metal site (See Figure 5b), which leads to a decrease
in the adsorption energy bound to the OH adsorbate. Thus, the free energy change in
the first two elementary steps of the OER was effectively improved, thereby reducing
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the OER overpotential and remarkably promoting the catalytic activity. Moreover, this
result is consistent with that of the Bader charge transfer on the Ni atom, which decreases
from −0.89e of Ni@Mo2TiC2O2 SACs to −0.79e of Pt/Ni@Mo2TiC2O2 h-DACs and further
decreases to −0.76e of ∗O-Pt/Ni@Mo2TiC2O2 h-DACs (See Table S2).
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Figure 5. (a) The schematic diagram of d-band center theory mechanism. (b) The projected DOS
and the position of d-band center of Ni atom for Ni@Mo2TiC2O2, Pt/Ni@Mo2TiC2O2, and O-
Pt/Ni@Mo2TiC2O2. The position of d-band center of spin-up and spin-down are marked with
numbers, respectively.

4. Conclusions

In conclusion, on the basis of the DFT first-principles calculations, we systemati-
cally explored the OER and HER catalytic activity of Pt/TM@Mo2TiC2O2 heterogeneous
double-atom catalysis (TM = Ti, V, Cr, Fe, Co, Ni, Cu, and Zn). Our computations demon-
strated that the constructed h-DACs catalysts have more flexible activity centers than
the SACs and the h-DACs, which significantly increase the loading of metal atoms. In
addition, the synergistic effect of bimetallic atoms of h-DACs enhances the OER and
HER catalytic activity of the corresponding SACs. We found that Pt/Cu@Mo2TiC2O2,
Pt/V@Mo2TiC2O2, and Pt/Co@Mo2TiC2O2 h-DACs showed great potential in HER cataly-
sis and Pt/Ni@Mo2TiC2O2 and Pt/Cr@Mo2TiC2O2 h-DACs exhibited superior OER cat-
alytic activity. In particular, two h-DACs, Pt/Cu@Mo2TiC2O2 and Pt/Ni@Mo2TiC2O2, ex-
hibited ultra-low overpotentials for the HER (|∆GH

∗| = 0.04 eV) and OER (ηOER = 0.38 V),
respectively, which are even better than those of the benchmark Pt (|∆GH

∗| = 0.09 eV)
and RuO2 (ηOER = 0.42 V) or IrO2 (ηOER = 0.56 V). Specifically, the formation of the co-
adsorbed ∗O-Pt/Ni@Mo2TiC2O2 structure clarifies the origin of the high catalytic activity
of Pt/Ni@Mo2TiC2O2 h-DACs. Our findings provide a valuable reference for the rational
design of catalysts with promising applications for OER and HER.

Supplementary Materials: The following supporting information are available online at https:
//www.mdpi.com/article/10.3390/ma16041457/s1, Figure S1: The most stable structures diagram
for Pt/TM@Mo2TiC2O2 h-DACs (TM = Ti, V, Cr, Fe, Co, Ni, Cu and Zn), Figure S2. The possi-
ble H proton adsorption sites on the (a) Pt/TM@Mo2TiC2O2 h-DACs surface (TM = Ti, V, Cr and Fe);
(b) Pt/Co@Mo2TiC2O2 h-DACs surface; (c) Pt/Ni@Mo2TiC2O2 h-DACs surface; (d) Pt/TM@Mo2TiC2O2 h-
DACs surface (TM = Cu, Zn), Figure S3. The possible H proton adsorption sites on the (a) Pt@Mo2TiC2O2
SACs surface and (b) Cu@Mo2TiC2O2 SACs. (c) Calculated Gibbs free energy profiles of HER for
Pt@Mo2TiC2O2 SACs, Cu@Mo2TiC2O2 SACs and Pt/Cu@Mo2TiC2O2 h-DACs, Figure S4. The diagram
of all possible ORR pathways and corresponding Gibbs free energy on Pt/Ni@Mo2TiC2O2 h-DACs,
red lines represent the energy-favored reaction pathways, Figure S5. The diagram of all possible ORR
pathways and corresponding Gibbs free energy on Pt/Ti@Mo2TiC2O2 h-DACs, red lines represent the
energy-favored reaction pathways, Figure S6. The diagram of all possible ORR pathways and correspond-
ing Gibbs free energy on Pt/V@Mo2TiC2O2 h-DACs, red lines represent the energy-favored reaction
pathways, Figure S7. The diagram of all possible ORR pathways and corresponding Gibbs free energy
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on Pt/Cr@Mo2TiC2O2 h-DACs, red lines represent the energy-favored reaction pathways, Figure S8.
The diagram of all possible ORR pathways and corresponding Gibbs free energy on Pt/Fe@Mo2TiC2O2
h-DACs, red lines represent the energy-favored reaction pathways, Figure S9. The diagram of all possible
ORR pathways and corresponding Gibbs free energy on Pt/Co@Mo2TiC2O2 h-DACs, red lines repre-
sent the energy-favored reaction pathways, Figure S10. The diagram of all possible ORR pathways and
corresponding Gibbs free energy on Pt/Cu@Mo2TiC2O2 h-DACs, red lines represent the energy-favored
reaction pathways, Figure S11. The diagram of all possible ORR pathways and corresponding Gibbs
free energy on Pt/Zn@Mo2TiC2O2 h-DACs, red lines represent the energy-favored reaction pathways,
Figure S12. The configurations of oxygenated intermediates in energy-favored reactions pathways of OER
on Pt/Cr@Mo2TiC2O2 h-DACs. The red line represents the most energy-consuming step, Figure S13. (a)
The Projected DOS and the location d-band center of Pt atom for Pt@Mo2TiC2O2, Pt/Cr@Mo2TiC2O2
and Pt-O-Cr@Mo2TiC2O2 h-DACs. (b) The electronic DOS (per atom) of Pt/Cr@Mo2TiC2O2 h-DACs and
Pt/Ni@Mo2TiC2O2 h-DACs, Table S1. ∆GH* of different H adsorption sites on the Pt/TM@Mo2TiC2O2
DACs surface (TM = Ti, V, Cr, Fe, Co, Ni, Cu and Zn). Wherein, “x” represents structural instability after
H proton adsorbed to the site. “-” represents the non-existent sites, Table S2. The number of the charge
transfer (Qe, e) from Sigle-atom to substrate.
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