Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Alkali Fusion
2.3. Synthesis of Geopolymer
2.4. Material Characterization
3. Results and Discussion
3.1. Microanalysis of Activated Quartz
3.1.1. XRD
3.1.2. FTIR
3.1.3. SEM
3.2. Activation Analysis
3.3. Compressive Strength
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arel, H.Ş.; Shaikh, F.U.A. Semi-green cementitious materials from waste granite by considering the environmental, economic, and health impacts: A review. Struct. Concr. 2019, 20, 455–470. [Google Scholar] [CrossRef]
- Barrie, E.; Cappuyns, V.; Vassilieva, E.; Adriaens, R.; Hollanders, S.; Garcés, D.; Paredes, C.; Pontikes, Y.; Elsen, J.; Machiels, L. Potential of inorganic polymers (geopolymers) made of halloysite and volcanic glass for the immobilisation of tailings from gold extraction in Ecuador. Appl. Clay Sci. 2015, 109–110, 95–106. [Google Scholar] [CrossRef]
- Wu, Y.; Lu, B.; Bai, T.; Wang, H.; Du, F.; Zhang, Y.; Cai, L.; Jiang, C.; Wang, W. Geopolymer, green alkali activated cementitious material: Synthesis, applications and challenges. Constr. Build. Mater. 2019, 224, 930–949. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Fletcher, R.A.; Mackenzie, K.J.D.; Nicholson, C.L.; Shimada, S. The composition range of aluminosilicate geopolymers. J. Eur. Ceram. Soc. 2005, 25, 1471–1477. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Geng, J.; Zhou, M.; Zhang, T.; Wang, W.; Wang, T.; Zhou, X.; Wang, X.; Hou, H. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation. Mater. Struct. Constr. 2017, 50, 109. [Google Scholar] [CrossRef]
- Wattimena, O.K.; Antoni Hardjito, D. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer. AIP Conf. Proc. 2017, 1887, 020041. [Google Scholar]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Zerfu, K.; Ekaputri, J. Review on alkali-activated fly ash based geopolymer concrete. Mater. Sci. Forum. 2016, 841, 162–169. [Google Scholar] [CrossRef]
- Agnihotri, A.; Jethoo, A.; Ramana, P. Mechanical properties of unprotected recycled concrete to fiery-hot. Mater. Today Proc. 2020, 44, 4855–4861. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, A.; Bao, X.; Ni, T.; Ling, J. A review on geopolymer in potential coating application: Materials, preparation and basic properties. J. Build. Eng. 2020, 32, 101734. [Google Scholar] [CrossRef]
- Agnihotri, A.; Ramana, P. GGBS: Fly-Ash evaluation and mechanical properties within high strength concrete. Mater. Today Proc. 2021, 50, 2404–2410. [Google Scholar] [CrossRef]
- Nawaz, M.; Heitor, A.; Sivakumar, M. Geopolymers in construction—Recent developments. Constr. Build. Mater. 2020, 260, 120472. [Google Scholar] [CrossRef]
- Hoyos-Montilla, A.A.; Puertas, F.; Ivan Tobon, J. Study of the reaction stages of alkali-activated cementitious materials using microcalorimetry. Adv. Cem. Res. 2021, 33, 1–13. [Google Scholar] [CrossRef]
- Agnihotri, A.; Jethoo, A.S.; Ramana, P. Mechanical and durability analysis of recycled materials. Key Eng. Mater. 2021, 882, 228–236. [Google Scholar] [CrossRef]
- Nayak, S.K.; Satapathy, A.; Mantry, S. Use of waste marble and granite dust in structural applications: A review. J. Build. Eng. 2022, 46, 103742. [Google Scholar] [CrossRef]
- Ramana, P.; Agnihotri, A. Fly-ash conjoined ground granulated blast furnace slag proxy for fresh and hardened responses. Mater. Today Proc. 2021, 49, 1942–1949. [Google Scholar]
- Longos, A.; Tigue, A.; Malenab, R.; Dollente, I.; Promentilla, M. Mechanical and thermal activation of nickel-laterite mine waste as a precursor for geopolymer synthesis. Results Eng. 2020, 7, 100148. [Google Scholar] [CrossRef]
- Autef, A.; Joussein, E.; Gasgnier, G.; Rossignol, S. Role of the silica source on the geopolymerization rate. J. Non-Cryst. Solids 2012, 358, 2886–2893. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, Y.; Chen, T.; Bao, S.; Liu, T.; Huang, J. Geopolymerisation of a silica-rich tailing. Miner. Eng. 2011, 24, 1710–1712. [Google Scholar] [CrossRef]
- Meng, R.; Liu, T.; Zhang, Y.; Huang, J.; Yuan, Y.; Hu, P. Synchronous activation of Si and Al in vanadium-bearing shale leaching residue via sodium carbonate additive. Constr. Build. Mater. 2018, 170, 20–25. [Google Scholar] [CrossRef]
- Tchadjié, L.; Djobo, J.; Ranjbar, N.; Tchakouté, H.; Kenne, B.; Elimbi, A.; Njopwouo, D. Potential of using granite waste as raw material for geopolymer synthesis. Ceram. Int. 2016, 42, 3046–3055. [Google Scholar] [CrossRef]
- Luo, Y.; Bao, S.; Zhang, Y. Preparation of one-part geopolymeric precursors using vanadium tailing by thermal activation. J. Am. Ceram. Soc. 2020, 103, 779–783. [Google Scholar] [CrossRef]
- Tian, X.; Rao, F.; Li, C.; Ge, W.; Lara, N.; Song, S.; Xia, L. Solidification of municipal solid waste incineration fly ash and immobilization of heavy metals using waste glass in alkaline activation system. Chemosphere 2021, 283, 131240. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zhang, H.; Zhang, T.; Fernández, C. Alkali-activated copper tailings-based pastes: Compressive strength and microstructural characterization. J. Mater. Res. Technol. 2020, 9, 6557–6567. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; García, R.E.; Estrella, R.M.; Patiño, C.L.; Zhang, Y. Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cem. Concr. Compos. 2017, 79, 45–52. [Google Scholar] [CrossRef]
- Wan, Q.; Zhang, Y.; Zhang, R. Using mechanical activation of quartz to enhance the compressive strength of metakaolin based geopolymers. Cem. Concr. Compos. 2020, 111, 103635. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S.; Cholico-González, D.; Ortiz, N. Combination formation in the reinforcement of metakaolin geopolymers with quartz sand. Cem. Concr. Compos. 2017, 80, 115–122. [Google Scholar] [CrossRef]
- Simão, L.; Hotza, D.; Ribeiro, M.; Novais, R.; Montedo, O.; Raupp-Pereira, F. Development of new geopolymers based on stone cutting waste. Constr. Build. Mater. 2020, 257, 119525. [Google Scholar] [CrossRef]
- Tian, L.; Feng, W.; Ma, H.; Zhang, S.; Shi, H. Investigation on the microstructure and mechanism of geopolymer with different proportion of quartz and K-feldspar. Constr. Build. Mater. 2017, 147, 543–549. [Google Scholar] [CrossRef]
- Wan, Q.; Rao, F.; Song, S. Reexamining calcination of kaolinite for the synthesis of metakaolin geopolymers—Roles of dehydroxylation and recrystallization. J. Non-Cryst. Solids 2017, 460, 74–80. [Google Scholar] [CrossRef]
- Kumar, S.; Mucsi, G.; Kristály, F.; Pekker, P. Mechanical activation of fly ash and its influence on micro and nano-structural behavior of resulting geopolymers. Adv. Powder Technol. 2017, 28, 805–813. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.; Brouwers, H. Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Constr. Build. Mater. 2015, 80, 105–115. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, Y.; Li, L.; Wang, W.; Teng, Q.; Zhang, X. Effect of Mn (II) on quartz flotation using dodecylamine as collector. J. Cent. S. Univ. 2014, 21, 3603–3609. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Wang, B.; Duan, H.; Peng, X.; Chen, X.; Zhao, Q. Novel hydroxy polyamine surfactant N-(2-hydroxyethyl)-N-dodecyl-ethanediamine: Its synthesis and flotation performance study to quartz. Miner. Eng. 2019, 142, 105894. [Google Scholar] [CrossRef]
- Shi, J.; He, F.; Xie, J.; Liu, X.; Yang, H. Effects of Na2O/BaO ratio on the structure and the physical properties of low-temperature glass-ceramic vitrified bonds. Ceram. Int. 2018, 44, 10871–10877. [Google Scholar] [CrossRef]
Constituent | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | TiO2 | CaO | V2O3 | LOI |
Content (Wt. %) | 48.11 | 43.90 | 2.99 | 0.16 | 0.37 | 2.07 | 0.48 | 0.49 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, W.; Chen, J.; Min, F.; Song, S.; Liu, H. Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation. Materials 2023, 16, 1552. https://doi.org/10.3390/ma16041552
Ge W, Chen J, Min F, Song S, Liu H. Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation. Materials. 2023; 16(4):1552. https://doi.org/10.3390/ma16041552
Chicago/Turabian StyleGe, Wei, Jun Chen, Fanfei Min, Shaoxian Song, and Hui Liu. 2023. "Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation" Materials 16, no. 4: 1552. https://doi.org/10.3390/ma16041552
APA StyleGe, W., Chen, J., Min, F., Song, S., & Liu, H. (2023). Potential Evaluation for Preparing Geopolymers from Quartz by Low-Alkali Activation. Materials, 16(4), 1552. https://doi.org/10.3390/ma16041552