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Abstract: The present study reveals the microstructural evolution and corresponding mechanisms
occurring during different stages of quenching and partitioning (Q&P) conducted on 0.6C-1.5Si steel
using in-situ High Energy X-Ray Diffraction (HEXRD) and high-resolution dilatometry methods.
The results support that the symmetry of ferrite is not cubic when first formed since it is fully su-
persaturated with carbon at the early stages of partitioning. Moreover, by increasing partitioning
temperature, the dominant carbon source for austenite enrichment changes from ongoing bainitic
ferrite transformation during the partitioning stage to initial martensite formed in the quenching
stage. At low partitioning temperatures, a bimodal distribution of low- and high-carbon austen-
ite, 0.6 and 1.9 wt.% carbon, is detected. At higher temperatures, a better distribution of carbon
occurs, approaching full homogenization. An initial martensite content of around 11.5 wt.% after
partitioning at 280 ◦C via bainitic ferrite transformation results in higher carbon enrichment of
austenite and increased retained austenite amount by approximately 4% in comparison with parti-
tioning at 500 ◦C. In comparison with austempering heat treatment with no prior martensite, the
presence of initial martensite in the Q&P microstructure accelerates the subsequent low-temperature
bainitic transformation.

Keywords: in-situ synchrotron XRD; high-resolution dilatometry; quenching and partitioning (Q&P);
high-carbon steel; advanced high strength steels; martensitic/bainitic phase transformation

1. Introduction

The quenching and partitioning (Q&P) heat treatment method has been investigated
in both academia and industry during the past two decades due to the good strength and
formability of the resulting products [1]. It consists of partial martensite formation from a
completely or partially austenitic microstructure, followed by heating at the same or higher
temperature to facilitate carbon partitioning and stabilization of the retained austenite [2].
In this process, two main mechanisms have been proposed for carbon partitioning of the
untransformed austenite: (i) diffusion of carbon from carbon-supersaturated martensite;
and (ii) carbon enrichment of austenite associated with the formation of carbide-free
bainite [3].

Both mechanisms lead to the formation of local high-carbon austenite (γHC) regions,
austenite films between the plates of bainitic ferrite blocks, trapped among the sheaves
of bainite [4], and austenite regions adjacent to tempered martensite [5]. However, as
stated by Guo et al. [6], the latter mechanism results in a bimodal carbon distribution in
austenite grains having carbon concentrations of 0.58 and 1.12 wt.% for low- and high-
carbon austenite respectively.

Depending on chemical composition, the minimum carbon concentration for stabi-
lizing austenite at room temperature varies; for example, Hyughe et al. [7] reported a
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minimum of 0.8 wt.% carbon for 0.2C-1.41Si-2.31Mn steel, while 1.15 wt.% was needed in
another steel grade reported by Maheswari et al. [8].

However, competing processes like carbide precipitation and austenite decomposition
must be minimized to ensure a successful partitioning process. This is accomplished by
delaying the development of carbides using alloying elements such as Si, Al, or P [9]
and optimizing Q&P heat treatment [10,11]. Unlike the effect on cementite formation, the
effect of these alloying elements on transitional carbides (ε and η) is not very clear, as
some transitional carbides can be found in lower-carbon sheet steels treated by Q&P [12].
Therefore, understanding the mechanisms and conditions responsible for maintaining
the stability of retained austenite (RA) at quenching temperature (QT) and holding at the
subsequent partitioning stage is critical for the development of Q&P steels.

The Q&P heat treatment has been extensively investigated in the past [2,9,13–16]. Typi-
cal characterization techniques (e.g., XRD, SEM, TEM, and Atom Probe Tomography (APT))
have been widely used to investigate microstructural development. However, metallurgical
processes involving carbon, such as diffusion and partitioning or carbide precipitation,
are challenging to evaluate using traditional methods. Therefore, high acquisition rate
techniques are of an immense importance in investigation of these phenomena.

Past research on steels has shown that the use of in-situ approaches to gather time-
resolved information is useful [17–22]. Furthermore, recent studies on microstructural
development during Q&P treatment suggest that in-situ HEXRD is among the best ap-
proaches for studying carbon partitioning [7,23–29].

Understanding the microstructural evolution involved in the Q&P process requires
obtaining information on carbon diffusion and distribution in the different constituents
included in the microstructure, i.e., retained austenite, bainitic ferrite, and carbides. In
particular, in-situ HEXRD and dilatometry, combined with extremely high acquisition
rates, have enabled researchers [7,26,30–32] to gain a better understanding of austenite
evolution throughout the entire Q&P process. Furthermore, the parameters that affect the
kinetics of the process can also be elaborately investigated only with in-situ methods. Some
theories claim that the existence of prior martensite (PM) accelerates the bainite transfor-
mation [33–36]. However, as the competing phenomena (e.g., carbide formation, carbon
trapping at dislocations, and decomposition of austenite to bainite) occur simultaneously,
the mechanisms need to be further investigated.

Therefore, the objective of this study is to increase knowledge about the influence of
partitioning temperature on the microstructural evolution of high-carbon high-silicon steel,
and about the partitioning mechanisms that lead to austenite stabilization during different
stages of the Q&P treatment. These include: (a) partial austenite to martensite transfor-
mation during the initial quench, (b) the reheating stage to the partitioning temperature,
(c) carbon enrichment and carbon homogenization during partitioning, and (d) the stability
of retained austenite at room temperature. For this purpose, high partitioning tempera-
tures were applied for short periods, and these were compared with lower partitioning
temperatures utilized for longer periods. Additionally, in this study, particular attention
was devoted to the effect of three partitioning temperatures on partitioning mechanisms
(corresponding to different fractions of bainitic ferrite formed during the partitioning).
Furthermore, the effect of pre-existing martensite on the kinetics of bainite transformation
was investigated.

2. Materials and Methods
2.1. Material and Thermal Treatments

The chemical composition of the studied steel (denoted as 06CV), produced by AS-
COMETAL, France, is Fe-0.6C-1.25Mn-1.6Si-1.75Cr-0.15Mo-0.12V (in wt.%). Four spec-
imens from a hot-rolled and annealed bar with an initial pearlitic microstructure were
machined into hollow cylinders with 4 mm external diameter, 1 mm wall thickness, and
10 mm length (L0). It was assumed that the effect of texture would be negligible in this
study since this was confirmed by Electron Backscatter Diffraction (EBSD) in [37]. All heat
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treatments started with complete austenitization of the materials, followed by quenching
with pressured Argon gas to 165 ◦C and hold at temperature for 13 s, except for one sample
which was isothermally austempered at 280 ◦C for 30 min. As shown in Figure 1, the
procedure included direct quenching of one sample to 30 ◦C while heating the others to
280, 400, and 500 ◦C for various holding durations.
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Figure 1. Heat treatments (austempering, direct quenching, and quenching & partitioning) were
applied in this study. FQ and SQ represent the first and second quench, respectively.

2.2. High Energy X-ray Diffraction (HEXRD)

In-situ high-energy XRD measurements were carried out using transmission geometry
at the P07B beamline of Hereon at PETRA III, DESY, Germany. The experiments were
performed using monochromatic synchrotron X-ray radiation with a photon energy of
87.1 keV (λ = 0.14235 Å) and a beam size of 0.7 × 0.7 mm2 to achieve a short acquisition
time, reasonable grain statistics, and reasonably good angular resolution. Instrument
calibration was carried out to determine the values required for X-ray data analysis (e.g.,
line broadening, wavelength, detector non-orthogonality, and distance between the sample
and the detector) using LaB6 powder (SRM 660C NIST, USA). Diffraction patterns were
obtained continuously during the experiments with a Perkin Elmer (USA) XRD1621 X-ray
detector with a pixel size of 200 µm positioned at a distance of 1392 mm behind the sample.
This configuration resulted in the detection of full Debye–Scherrer rings up to a maximum
2Theta angle of 11.2◦. Two modes were employed in diffraction pattern recording: a slow
mode used during austenitizing and at the end of the heat treatments, with an exposure
time of 3.2 s for each frame, and a fast mode with an exposure time of 0.3 s for the quenching
section and the beginning of partitioning (the area is highlighted in Figure 1).

2.3. Dilatometry

The thermal treatments were performed with a dilatometer DIL 805A/D from TA
Instruments, USA, located in the beam, and a Pt/Pt–Rh thermocouple centrally spot-
welded at the surface of the specimen close to the X-ray illuminated volume. It should
be noted that as the thermal treatments before the first quenching were the same for all
experiments, the average of four measurements is reported in the following sections.
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2.4. Rietveld Refinement Analysis
2.4.1. Debye–Scherrer Ring Integration

Integration of the recorded Debye–Scherrer rings was carried out azimuthally using
the MAUD program with a 5◦ step corresponding to 72 patterns per image. The obtained 1D
diffraction data were then processed using a Rietveld refinement procedure implemented
with MAUD software.

2.4.2. Instrument Calibration

The instrumental line-broadening contribution was determined by using the LaB6
powder sample. This can be achieved in MAUD by setting the line-broadening model to
none and the size–strain model to isotropic for this LaB6 phase, and refining the Cagli-
oti, asymmetry, and Gaussian parameters for the instrument object (for more details, see
ref. [38]). Subsequently, for other specimens, these determined instrumental parameters
were used as fixed, and only background, scale, basic phase, and crystal structure pa-
rameters were refined. The weighted profile R-factor (Rwp), the expected R-factor (Rexp),
and chi squared (χ2) were used as indicators of the quality of fitting for each refinement,
where Rwp > Rexp and 1 < χ2 < 3.5. Moreover, all the fittings were also checked graphi-
cally by comparing the detected patterns to simulated ones to ensure that the model was
plausible [39].

3. Results
3.1. Coefficient of Thermal Expansion (CTE)

The contribution of thermal expansion to the lattice parameter can be calculated using
the linear range Ln (a/a0) as a function of temperature, as shown in Figure 2, which corre-
sponds to a cooling step from 910 to 240 ◦C. According to the dilatometry and XRD data,
the alloy is fully austenitic in this region. The decrease in the austenite lattice parameter
with temperature can therefore be attributed to austenite’s thermal contraction [23].
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According to Lu et al. [40], the molar volume of nonmagnetic phases can be calculated
using the following equation:

Vnonmag
m (T) = V0exp

(∫ T

T0

3αdT
)

(1)

where V0 is the molar volume at the reference temperature T0. α denotes the CTE of a
phase in the nonmagnetic state, reported as an independent thermal coefficient in the
case of Fe-fcc. The molar volume (Vm (T)) is directly related to a3

γ. Thus, the influence of
temperature on the lattice parameter of the austenite is determined by Equation (2):

aT
γ = a0

γexp(α (T − T0)) (2)

Consequently, the coefficient of thermal expansion (CTE) of the 06CV steel is calculated
as 2.2641 × 10−5 K−1, which is consistent with previous studies [6,40–43] showing CTEs in
the range of 2.0–2.5 (×10−5 K−1) independent of the initial microstructure and chemical
composition.

3.2. Austenite Carbon Content Estimation

Different empirical equations for estimating the austenite lattice parameter at room
temperature based on chemical composition have been proposed in the literature [17,44–48].
In all of them, the weight of the carbon content is much greater than that of the substitutional
elements. In this study, the Equation (3) proposed by Dyson and Holmes [41] was used:

aγ = 3.5847 + 0.0330× [C] + 0.00095× [Mn]− 0.0002× [Ni]+0.0006× [Cr] + 0.0015× [Cu] (3)

In the above equation, 3.5847 Å corresponds to the austenite lattice parameter in pure
iron at room temperature. Using the composition provided in Section 2.1, the austenite
lattice parameter can be calculated to be 3.6067 Å.

However, the thermal expansion effect at elevated temperatures must be excluded,
which can be done using the expression proposed by Denand et al. [41], Equation (4):

wγ
C =

∆aγ

A
+ wγ

C0 (4)

where wγ
C is the total carbon concentration change in the austenite, ∆aγ is the difference in

the lattice parameter of the austenite without thermal contribution over time at the same
temperature, wγ

C0 is the nominal carbon content of the steel, and A is the constant parameter
of 0.033 wt.% extracted from the Dyson and Holmes equation.

3.3. First Quench (Initial Martensite State)

Austenitization was performed at 910 ◦C and the first quenching treatment was
stopped at 165 ◦C. Figure 3 shows the evolution of the γ→ά transformation of the as-
quenched specimen. The slope of dilation ( d (RCL)

dT ) vs. time shows two changes in the
slope, indicating the first Ms temperature (MQ1

s = 240 ◦C) and the second Ms temperature
(MQ2

s ) at around 185 ◦C. Although XRD patterns do not show any martensite peaks in stage
I, the XRD data clearly confirms the second Ms temperature (MQ2

s ). Figure 3b represents a
logarithmic contour graph of the XRD patterns versus time. According to this graph, when
the temperature is reduced, martensite peaks appear gradually. The first doublet peaks
that show up at 183.1 ◦C are (101) and (110), indicating that this temperature is a good
estimate of MQ2

s .
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Figure 3. Dilation and XRD evolutions of the samples during the first quench to 165 ◦C: (a) rel-
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tice planes in austenite and martensite (colors from red to dark green represent highest to lowest
intensities, respectively).

The authors [49] have noted that micro-segregation generates bands of enriched and
deficient Mn–Cr areas, which affected the Ms temperature of the bands in a separate
experiment on the same steel (bands with higher amounts of Cr-Mn resulted in lower
Ms temperature, and vice versa). Therefore, it can be concluded that partial segregation
affected the first quench, based on the foregoing observations and previous research on the
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studied steel. At MQ1
s = 240 ◦C, the minor bands which are depleted Mn–Cr areas began

to transform into martensite, but the percentage was most likely below the synchrotron
detection limit. Subsequently, the major enriched Mn–Cr regions started transforming
at MQ2

s = 183 ◦C. Consequently, as the undercooling was around 20 ◦C, only 11.5 wt.%
martensite was formed.

Moreover, at this temperature range (183→ 165 ◦C), the martensite exhibited carbon
depletion as the tetragonality decreased by quenching temperature, from 1.030 at 183 ◦C to
1.026 at 165 ◦C. However, estimation of the average carbon atom diffusion in the austenite
using Equation (5) resulted in a radial distance (r) of carbon atom movement of 0.4 nm after
13 s of holding time at 165 ◦C, which could not significantly change the carbon enrichment
of the austenite. This also explains the constant value of the mean austenite carbon content
measured by XRD Rietveld refinement analysis during this stage.

r = 2.4
√

D·t (5)

D in Equation (5) is the carbon diffusivity defined by Equation (6), with t indicating
time in seconds:

D
(

cm2

s

)
= (0.04 + 0.08C)exp(

−31350
RcT ) (6)

In Equation (6), Rc is the gas constant (1.987 cal
k·mol ), T is the temperature in Kelvin, and

C is the nominal carbon content of the steel (in wt.%) [50].

3.4. Reheating Stage to the Partitioning Temperature

Figure 4a depicts the diffusivity of carbon into austenite and the evolution of the
bct phase (tempered martensite) and the bcc phase (bainitic ferrite) during heating from
the first quench temperature (165 ◦C) to the partitioning temperature. At partitioning
temperatures lower than 400 ◦C, the mean austenite carbon content (pink circles) does
not vary significantly by temperature. However, it increases considerably at temperatures
above 400 ◦C. As given by Equation (5), carbon diffusivity is considerably increased as a
function of higher temperature.
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Figure 4. (a) Diffusivity of carbon into austenite, change in austenite carbon content as a function
of ∆aγ

A , percentage of bainitic ferrite and carbon depletion from bct phase during heating from the
quenching temperature (165 ◦C) to the partitioning temperatures; (b) Full width at half maximum
peak values (FWHM) evolution of two austenite peaks (202 and 200) showing heterogeneity during
reheating stage.
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3.4.1. FCC Phase Evolution

In addition to the mean carbon content, the full width at half maximum peak values
(FWHM) of diffraction peaks can be used to evaluate chemical homogeneity/heterogeneity
in the austenite. The decrease in FWHM is primarily attributed to the homogeneity of
austenite carbon content, and vice versa [41]. The FWHM results in Figure 4b measured
from γ200 and γ202 peaks, which are not overlapped by ferrite/martensite peaks [6], show
a positive slope, indicating an increased heterogeneity in the austenite carbon content.

One explanation for this heterogeneity is short-range carbon atom diffusion out of
tetragonal ferrite into neighboring filmy austenite [51]. Therefore, two forms of austenite,
i.e., high- and low-carbon austenite, can be detected by analyzing the FWHM changes,
which is consistent with prior studies [48,52] and will be discussed in detail in Section 3.6.

3.4.2. Tetragonal BCT Phase

According to the XRD results shown in Figure 4a, describing the quantitative results
achieved during heating from 165 ◦C to 500 ◦C, it can be seen that the tetragonality diagram
shows a decrease, which indicates carbon depletion from initial martensite by increasing
the temperature.

This observation confirms the previous calculations of the solubility of carbon in
tetragonal ferrite in equilibrium with austenite [51]. The results of Figure 4a also confirm
that the symmetry of ferrite in equilibrium with austenite is not cubic when first formed,
since it is fully supersaturated with carbon [53]. It is worth noting that tetragonality in
steels with C < 0.6 wt.% has a direct linear relation with carbon concentration in martensite,
with c

a = 1 + 0.031× C wt.% [54].

3.5. Effect of Partitioning Temperature on Partitioning Mechanisms

Figure 5 depicts the microstructural evolution of bainitic ferrite and austenite during
the partitioning stage at different partitioning temperatures. It demonstrates that, in
addition to carbon partitioning from martensite to austenite, bainitic transformation is
another active mechanism for austenite carbon enrichment.

It is worth noting that no evidence of carbide formation was found during partition-
ing as a competitive carbon-consuming mechanism in this steel. The XRD images were
recorded every 0.3 s, which gives a high resolution for tracking carbide formation including
transitional carbides [13]. Therefore, it can be assumed that unless some amount of the
carbon atoms were entrapped by the dislocations [55] or clustered [56] in bainitic ferrite,
the remaining atoms will accompany the carbon partitioning.

Figure 5a reveals that nearly 8% of new bainitic ferrite forms during the partitioning
stage at 280 ◦C for 900 s, but the mean carbon content of the austenite only slightly increases.
The FWHM of the austenite peaks, on the other hand, shows an increase, which is related
to the heterogeneity of carbon in retained austenite. Because of the low carbon diffusivity
at 280 ◦C, carbon atoms can only migrate roughly 140 nm even after 900 s of holding time.
This results in the formation of two types of austenite, high- and low-carbon austenite,
as shown in Figure 5, which are described in the following section. At this partitioning
temperature, austenite enrichment by carbon atoms from the martensite and the bainite
transformation is more consistent with the experimental results.

Figure 5b demonstrates partitioning behavior at 400 ◦C, where less than 1.5 wt.%
bainitic ferrite is formed, while the amount of carbon partitioned into austenite is doubled
compared to partitioning at 280 ◦C. In addition, based on the changes in FWHM for the
γ200 and γ202 peaks, it can be concluded that carbon atoms distribute more homogenously
in austenite. All of these are consistent with higher carbon diffusivity and longer possible
diffusion distance, as calculated for 150 s of partitioning, r = 0.73 µm. Both carbon parti-
tioning to austenite from martensite and bainitic ferrite formation mechanisms are active at
this partitioning temperature.
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In contrast, at 500 ◦C, carbon partitioning to austenite from martensite is the dominant
mechanism. As can be seen in Figure 5c, the bainitic ferrite percentage barely increases.
Nevertheless, since carbon diffusivity is highest compared with other partitioning tempera-
tures, the mean carbon partitioned into austenite will be four times higher than at 280 ◦C
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after 5 s of partitioning, and thereafter plateaus with a slight positive slope. More signif-
icantly, as time passes, the FWHM reveals that the carbon homogeneity in the austenite
increases, which is consistent with r = 1.2 µm after 20 s of partitioning.

Moreover, in Figure 5a,b, at the partitioning temperatures of 280 and 400 ◦C, the
dilation behavior of the samples (blue curves) shows a significant correlation with the
bainitic ferrite amounts (pink triangles), which both increase with temperature. A possible
reason for this volume expansion, as mentioned by Santofimia et al. [2], could be the bainite
transformation. At 500 ◦C, however, it doesn’t follow the bainitic ferrite fraction; instead,
slight contraction or almost no change occurs in comparison with other samples. This might
be due to the following reasons. The first reason could be the result of an initial contraction
that took place to compensate for a positive deviation in the thermal path when it reached
the partitioning temperature. This deviation also appeared in other samples, but it can be
ignored because their holding times are substantially longer and their effect on dilation
is negligible. A second possible reason is that the carbon partitioning from martensite
into austenite is controlled by the constrained carbon equilibrium (CCE) criterion, so there
would not have to be any increase in the volume expansion if only this mechanism is
activated [2].

The FWHM results for the austenite peaks at 500 ◦C show an increase in austenite
carbon content homogenization, which is related to the equalization of the carbon in the
austenite by diffusion from carbon-rich parts to areas with lower carbon content (from γHC
to γLC). In a study [6] examining austempering at different temperatures, the γHC carbon
content decreased from 1.30 to 1.14 wt.% and the γLC increased from 0.22 to 0.34 wt.% after
300 s of austempering at 400 ◦C.

3.6. High- and Low-Carbon Austenite

Figure 6 illustrates a comparison of the X-ray diffraction line profile of the austenite
γ200 peak during partitioning at 280 ◦C and 500 ◦C. The evolution of the γ200 peak for pure
bainitic ferrite transformation at 280 ◦C is shown in Figure 6a. The austenite peak can
be fitted to homogenous austenite at first, so no γHC peak is present, but it then declines,
whereas a γHC peak grows somewhat with time. This is consistent with observations by
Guo et al. [6] that the amount of filmy austenite between bainitic ferrite platelets increases
as the bainite volume fraction increases during austempering. An asymmetrical broadening
at a lower angle (4.45◦) was found without any shift of the peak related to γLC, which
shows a bimodal distribution of carbon in austenite. The overlapping of two Gaussian
profiles may be used to describe the irregular peak form of austenite during the partitioning
process. This implies that the austenite phase is divided into two states, each with its own
set of lattice parameters, 3.618 and 3.660 nm. Using these lattice parameters, the carbon
concentrations are determined to be 0.6 and 1.9 wt.%, respectively. Similar calculations
were reported by Guo et al. [6] for a low-carbon steel, finding concentrations of 0.58 and
1.12 wt.% for γLC and γHC, respectively. In contrast, the evolution of the γ200 peak at 500 ◦C
is depicted in Figure 6b, in which supersaturated martensite partitioning is prominent. The
austenite peak can be fitted to a homogeneous austenite phase during the entire partitioning
stage. The peak merely shifts to lower angles, suggesting that the mean lattice parameter of
the austenite rises without any evidence of bimodal structure.
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Figure 6. X-ray diffraction line profile of austenite γ200 during partitioning at (a) 280 ◦C and
(b) 500 ◦C, showing bimodal and homogenous austenite phase compositions, respectively.

3.7. Effect of Partitioning Treatment on the Final Microstructure

The effect of the different partitioning treatments on the Ms temperature during the
second quenching is illustrated in Figure 7a. It can be observed that in contrast with the
general effect of carbon on Ms [57], the Ms temperature is not decreased by increasing
the mean carbon amount partitioned into austenite. However, the higher amount of
retained austenite at lower temperature Figure 7b, considering the bimodal austenite
peaks (see Section 3.6), shows the higher stability of lath austenite formed during bainite
formation at 280 ◦C.
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In addition to carbon partitioning from martensite to austenite, the bainite forma-
tion during the partitioning stage was another active mechanism for austenite carbon
enrichment. When the partitioning temperature was increased, the dominant austenite
enrichment mechanism changed from bainitic ferrite transformation to carbon partitioning
from supersaturated martensite. It has been shown that partitioning at 280 ◦C for 900 s
produces the highest percentage of retained austenite (almost 26 wt.%).

Moreover, in comparison with a sample quenched directly to room temperature with-
out partitioning treatment, the Ms temperature is significantly reduced. For the examined
steel, the Ms of the sample in this condition is 183 ◦C and the retained austenite fraction is
about 16 wt.%. The Ms temperature of the present steel, which is substantially lower than
that of low-carbon steels, explains its high amount of retained austenite.

As shown in the introduction, a carbon threshold of about 0.7–1 wt.% is required to
stabilize austenite at ambient temperature [7]. In the performed experiments, mainly due
to the high cooling rate, the initial martensite fraction is about 0.11, which is much lower
than predicted by the K–M equation or reported in previous observations about the same
steel with a lower cooling rate. As a result, the amount of carbon that can be partitioned
from martensite to austenite is limited. Additionally, as shown in Figure 5, by increasing
partitioning temperature, the dominant austenite carbon enrichment mechanism changes
from bainitic ferrite transformation to carbon partitioning from supersaturated martensite.
Consequently, as Figure 7 illustrates, stabilization of retained austenite when the latter
mechanism is dominant leads to a lower retained austenite fraction.

Based on the above discussion, the best approach for carbon enrichment in austenite
with a low amount of pre-existing martensite seems to be via bainitic ferrite transformation
by partitioning at lower temperatures, where more bainitic ferrite will be formed.

XRD analysis of the specimens showed that the microconstituents found in the final
microstructure can be listed as follows: tempered martensite formed during the parti-
tioning stage; bainitic ferrite and high-carbon austenite formed during partitioning; and
fresh martensite which has been slightly tempered (during cooling below the Ms in the
final quench). Additionally, to illustrate these constituents graphically, an optical micro-
graph of the specimen partitioned at 500 ◦C for 20 s and tint-etched using the Lepera
method [58] is shown as one example in Figure 8. With this method of etching, (i) tempered
martensite is shown in a blue scheme color [59], (ii) slightly tempered fresh martensite
and ferritic bainite are shown in beige/light brown colors [60], and (iii) retained austenite
remains white.
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3.8. Influence of Prior Martensite on Bainite Transformation

Normally, the bainite reaction takes a long time to achieve a steady state in low-
temperature austempering conditions, especially in the case of high-carbon high-silicon
steels. According to Guo et al. [33], the incubation time required for bainite initiation can
be thousands of seconds during austempering. Pre-existing martensite, on the other hand,
can reduce the required incubation time by 30%, according to Ko and Cottrell [61]. Recent
research has also demonstrated that preliminary martensite has the effect of accelerating
bainite transformation [33–36].

Figure 9 shows the evolution of one of the major peaks of ferrite (α211) using in-situ
HEXRD for two states, with and without partial quenching before isothermal holding at
280 ◦C in the Q&P and austempering processes, respectively (as shown in Figure 1). It
can be seen that the prior martensite accelerates the subsequent low-temperature bainite
transformation. The austempered sample exhibits no ferrite peaks after 900 s; only a
slight bump of the α211 peak is apparent after 30 min of soaking. In contrast, the Q&P
sample shows a reasonable increase for all peaks (as an example, the α211 peak is shown in
Figure 9a). Figure 5a demonstrates that around 8% of bainitic ferrite is formed during the
partitioning stage in the Q&P process.
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The accelerated phase transformation phenomenon could be explained by a change
in the conditions for nucleation and growth of the bainite isothermal transformation, as
well as by the lower energy requirement for heterogeneous nucleation as a result of in-
creased dislocation density and stress fields caused by the martensite phase transformation
expansion [33].

4. Conclusions

This study examines the dynamic microstructural changes occurring during heat
treatment of Fe-0.6C-1.25Mn-1.6Si-1.75Cr-0.15Mo-0.12V (in wt.%) steel via an in-situ study
by HEXRD and high-resolution dilatometry. Three Q&P schemes with different partitioning
temperatures (280, 400 and 500 ◦C) were performed after full austenitizing at 910 ◦C and
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initial quench to 165 ◦C, and in addition one austempering process at 280 ◦C was applied.
The main conclusions are as follows:

1. In addition to carbon partitioning from martensite to austenite, the bainite formation
during the partitioning stage was another active mechanism for austenite carbon
enrichment. When the partitioning temperature was increased, the dominant carbon
enrichment mechanism in the austenite changed from bainitic ferrite transformation
to carbon partitioning from supersaturated martensite. It has been shown that par-
titioning at 280 ◦C for 900 s produces the highest percentage of retained austenite
(almost 26 wt.%).

2. In comparison with austempering heat treatment with no prior martensite, the pres-
ence of initial martensite in the Q&P microstructure accelerates the subsequent bainitic
transformation during the partitioning stage.

3. The FWHM results measured from γ200 and γ202 peaks during partitioning at 280 ◦C
showed a positive slope, indicating heterogeneity in the austenite carbon content
when bainitic ferrite is formed in the microstructure (this occurs especially at lower
partitioning temperatures). The lattice parameters in the austenite varied from
3.618 to 3.660 nm, showing that the carbon concentration in the austenite was be-
tween 0.6 and 1.9 wt.%.

4. At temperatures below 400 ◦C, a new bct phase was detected. Tetragonality of this
phase was much higher than for ferrite (bcc structure), indicating that this phase
could be tetragonal ferrite, which would be consistent with the symmetry of ferrite in
equilibrium with austenite not being cubic when first formed, since it is supersaturated
with carbon.

5. The FWHM results for the austenite peaks at 500 ◦C indicate a more homogeneous
distribution of carbon. This phenomenon is related to carbon diffusion in the austenite
and an equalization of the carbon concentration in the austenitic grains.

6. The dilation behavior of the samples shows a significant correlation with bainitic
ferrite fraction as a function of increasing temperature. However, at 500 ◦C, when
the bainitic ferrite fraction is minor and carbon partitioning from supersaturated
martensite into austenite is the dominant mechanism, no volume expansion occurs.
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