A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry
Abstract
:1. Introduction
2. Method
3. Results and Discussion
3.1. The Chemical Composition of Resin-Matrix Cements
3.2. Polymerization Pathways
Author (Year) | Purpose | Resin-Matrix Cement | Light-Curing Procedures | Degree of Conversion (%) | |
---|---|---|---|---|---|
Turp et al. (2015) [36] | Evaluation of the effect of the thickness of zirconia on the curing efficiency of resin cements. | 10- MDP, DMA, Bis-MPEPP (25%); silanized barium glass (75%) (Panavia F 2.0, Kuraray, Japan) | LED (Elipar S10, 3M, ESPE, Saint Paul, MN, USA) for 20 s, 430–480 nm, 1200 W/cm2 | (G0) 69.95; 62.67; 53.15 (G1) 65.26; 58; 49 (G2) 62.8; 54.15; 43.64 (G3) 52.1; 49.33; 39.41 | |
Lopes et al. (2015) [83] | Evaluation of the degree of conversion (DC), Vickers microhardness (VH), and elastic modulus (E) of resin cements | Bis-GMA, Bis-EMA, TEGDMA (35%); barium alumo-silicate glass, silicon dioxide (66%); (Allcem, FGM, Brazil) Bis-GMA, urethane dimethacrylate, and triethylene glycol dimethacrylate. (56.4%); barium glass, ytterbium trifluoride, ba-Al-fluorosilicate glass, and spheroid mixed oxide (43.6%); (Variolink II, Ivoclar Vicadent, Liechsteintein) Methacrylate monomers (28%); silanated fillers, alkaline fillers. (72%); (RelyX U200, 3M ESPE, USA) Bis-GMA, UDMA, Bis-EMA, HEMA (60.3%); barium glass, ytterbium trifluoride, spheroid mixed oxide (39.7%); (Multilink, Ivoclar Vicadent, Liechsteintein) | Conventional halogen light-curing (Optilux) for 120 s; 501–650 mW/cm2 | (G0) 74.4; (G1) 71.1 (G0) 60.7; (G1) 67.9 (G0) 70; (G1) 76.2 (G0) 44; (G1) 43.7 | |
Sulaiman et al. (2015) [84] | Evaluation of the influence of material thickness on light irradiance, radiant exposure, and the DC of two dual-polymerizing resin cements light-polymerized through different brands of monolithic zirconia | Methacrylate monomers (57%); Silanated fillers (43%); (RelyX Ultimate, 3M ESPE, USA) Bis-GMA, urethane dimethacrylate, and triethylene glycol dimethacrylate. (56.4%); Barium glass, ytterbium trifluoride, Ba-Al-fluorosilicate glass, and spheroid mixed oxide (43.6%); (Variolink II, Ivoclar Vicadent, Liechsteintein) | (G1) LED (Elipar S10) for 20 s; 1200 mw/cm2; 430–480 nm. (G2) LED (Elipar S10) for 40 s; 1200 mw/cm2; 430–480 nm. | (G1) 63.1 (G2) 66 | |
Gültekin et al. (2015) [34] | Evaluation of the polymerization efficiency of a dual-cured resin cement cured with two different light curing units under zirconia structures with differing thicknesses | 10- MDP, DMA, Bis-MPEPP (25%); silanized barium glass (75%); (Panavia F 2.0, Kuraray, Japan) | LED (Elipar S10, 3M ESPE, Seefeld, Germany) for 20 s (5 s rmp, 15 s full cure); 430–480 nm; 1200 mW/cm2 QTH (Hilux 200, Benlioglu, Istanbul, Turkey) for 40 s (time in continuous mode); 410–500 nm; 600 mW/cm2 | QTH: (Z) 66.7; 60; 48.7 (Z1) 58.8; 54.3; 44.1 (Z2) 52.7; 48.2; 41.3 (Z3) 49.3; 46.2; 37.8 | LED: (Z) 69.9; 62; 53 (Z1) 65.2; 58; 49 (Z2) 62.8; 54.1; 43.6 (Z3) 52.1; 49.3; 39.4 |
Shim et al. (2017) [50] | Evaluation of the polymerization mode of self-adhesive, dual-cured resin cements light-cured through overlying materials with different degrees of translucency by measuring the DC. | UDMA; fluoro alumino silicate glass; (G-CEM Link ACE, GC Corp, USA) Bis-GMA; Fluoro aluminio silicate glass, fumed silica, barium glass, ytterbium fluoride (Maxcem Elite, Kerr Dental, USA) Bis-GMA; dental glass; (BisCem, Bisco, USA) | LED (Dr’s Light; Good Doctors Co., Incheon, Korea) for 40 s; 718 mW/cm2 | 50–75 | |
Caprak et al. (2018) [85] | Evaluation of the influence of the translucency parameters (TPs) of current monolithic CAD/CAM blocks on the microhardness of light-cured or dual-cured resin cements. | Bis-GMA, UDMA, TEGDMA; glass fillers; (Bisco Duo-Link, Bisco, USA) | LED (HS-LED1500; Henry Schein, Ontario, Canada) for 40 s; 1500 mW; 450–470 nm | Dual-cured: (G0) 59; (G1) 53 (G0) 57; (G1) 52 (G0) 56; (G1) 49 (G0) 56; (G1) 48 | Light-cured: (G0) 56; (G1) 48 (G0) 54; (G1) 46 (G0) 53; (G1) 45 (G0) 53; (G1) 43 |
3.3. The Influence of Indirect Restorative Materials
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manso, A.P.; Carvalho, R.M. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements. Dent. Clin. N. Am. 2017, 61, 821–834. [Google Scholar] [CrossRef]
- Ilie, N.; Simon, A. Effect of curing mode on the micro-mechanical properties of dual-cured self-adhesive resin cements. Clin. Oral Investig. 2012, 16, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Passos, S.P.; Kimpara, E.T.; Bottino, M.A.; Rizkalla, A.S.; Santos, G.C., Jr. Effect of ceramic thickness and shade on mechanical properties of a resin luting agent. J. Prosthodont. 2014, 23, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Shin, S.M.; Kim, H.J.; Paek, J.; Kim, S.J.; Yoon, T.H.; Kim, S.Y. Influence of glass-based dental ceramic type and thickness with identical shade on the light transmittance and the degree of conversion of resin cement. Int. J. Oral Sci. 2018, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Supornpun, N.; Oster, M.; Phasuk, K.; Chu, T.G. Effects of shade and thickness on the translucency parameter of anatomic-contour zirconia, transmitted light intensity, and degree of conversion of the resin cement. J. Prosthet. Dent. 2021, 129, 213–219. [Google Scholar] [CrossRef]
- Szalewski, L.; Wójcik, D.; Sofińska-Chmiel, W.; Kuśmierz, M.; Różyło-Kalinowska, I. How the Duration and Mode of Photopolymerization Affect the Mechanical Properties of a Dental Composite Resin. Materials 2023, 16, 113. [Google Scholar] [CrossRef]
- Lise, D.P.; Van Ende, A.; De Munck, J.; Yoshihara, K.; Nagaoka, N.; Cardoso Vieira, L.C.; Van Meerbeek, B. Light irradiance through novel CAD-CAM block materials and degree of conversion of composite cements. Dent. Mater. 2018, 34, 296–305. [Google Scholar] [CrossRef]
- Martins, F.V.; Vasques, W.F.; Fonseca, E.M. How the Variations of the Thickness in Ceramic Restorations of Lithium Disilicate and the Use of Different Photopolymerizers Influence the Degree of Conversion of the Resin Cements: A Systematic Review and Meta-Analysis. J. Prosthodont. 2019, 28, e395–e403. [Google Scholar] [CrossRef]
- Madrigal, E.L.; Tichy, A.; Hosaka, K.; Ikeda, M.; Nakajima, M.; Tagami, J. The effect of curing mode of dual-cure resin cements on bonding performance of universal adhesives to enamel, dentin and various restorative materials. Dent. Mater. J. 2021, 40, 446–454. [Google Scholar] [CrossRef]
- Faria, E.S.A.L.; Pfeifer, C.S. Development of dual-cured resin cements with long working time, high conversion in absence of light and reduced polymerization stress. Dent. Mater. 2020, 36, e293–e301. [Google Scholar] [CrossRef]
- Gheller, R.; Burey, A.; Vicentin, B.L.S.; Dos Reis, P.J.; Appoloni, C.R.; Garbelini, C.C.D.; Hoeppner, M.G. Microporosity and polymerization contraction as function of depth in dental resin cements by X-ray computed microtomography. Microsc. Res. Tech. 2020, 83, 658–666. [Google Scholar] [CrossRef]
- Meng, K.; Wang, L.; Wang, J.; Yan, Z.; Zhao, B.; Li, B. Effect of Optical Properties of Lithium Disilicate Glass Ceramics and Light-Curing Protocols on the Curing Performance of Resin Cement. Coatings 2022, 12, 715. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J. Self-adhesive resin cements—chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; Di Francescantonio, M.; Bedran-Russo, A.K.; Giannini, M. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX. Microsc. Res. Tech. 2012, 75, 1348–1352. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gonzalez, M.; Fidalgo-Pereira, R.C.; Torres, O.; Silva, F.; Henriques, B.; Özcan, M.; Souza, J.C.M. Toxicity of resin-matrix cements in contact with fibroblast or mesenchymal cells. Odontology 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hardy, C.M.F.; Bebelman, S.; Leloup, G.; Hadis, M.A.; Palin, W.M.; Leprince, J.G. Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials. Dent. Mater. 2018, 34, 1278–1288. [Google Scholar] [CrossRef] [PubMed]
- Veneziani, M. Posterior indirect adhesive restorations: Updated indications and the Morphology Driven Preparation Technique. Int. J. Esthet. Dent. 2017, 12, 204–230. [Google Scholar]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Tafur-Zelada, C.M.; Carvalho, O.; Silva, F.S.; Henriques, B.; Özcan, M.; Souza, J.C.M. The influence of zirconia veneer thickness on the degree of conversion of resin-matrix cements: An integrative review. Clin. Oral Investig. 2021, 25, 3395–3408. [Google Scholar] [CrossRef] [PubMed]
- Li, R.W.; Chow, T.W.; Matinlinna, J.P. Ceramic dental biomaterials and CAD/CAM technology: State of the art. J. Prosthodont. Res. 2014, 58, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Kaizer, M.R.; Zhang, Y. Load-bearing capacity of lithium disilicate and ultra-translucent zirconias. J. Mech. Behav. Biomed. Mater. 2018, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Tribst, J.P.M.; Dal Piva, A.M.O.; Penteado, M.M.; Borges, A.L.S.; Bottino, M.A. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz. Oral Res. 2018, 32, e118. [Google Scholar] [CrossRef] [PubMed]
- Reale Reyes, A.; Dennison, J.B.; Powers, J.M.; Sierraalta, M.; Yaman, P. Translucency and flexural strength of translucent zirconia ceramics. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
- Zhang, C.N.; Zhu, Y.; Zhang, Y.J.; Jiang, Y.H. Clinical esthetic comparison between monolithic high-translucency multilayer zirconia and traditional veneered zirconia for single implant restoration in maxillary esthetic areas: Prosthetic and patient-centered outcomes. J. Dent. Sci. 2022, 17, 1151–1159. [Google Scholar] [CrossRef]
- Lawson, N.C.; Bansal, R.; Burgess, J.O. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent. Mater. 2016, 32, e275–e283. [Google Scholar] [CrossRef] [PubMed]
- Galante, R.; Figueiredo-Pina, C.G.; Serro, A.P. Additive manufacturing of ceramics for dental applications: A review. Dent. Mater. 2019, 35, 825–846. [Google Scholar] [CrossRef]
- Rigolin, F.J.; Negreiros, W.M.; Giannini, M.; Rizzatti Barbosa, C.M. Effects of Sandblasting and Hydrofluoric Acid Etching on Surface Topography, Flexural Strength, Modulus and Bond Strength of Composite Cement to Ceramics. J. Adhes. Dent. 2021, 23, 113–119. [Google Scholar] [CrossRef]
- Khan, A.A.; Al-Khureif, A.A.; Saadaldin, S.A.; Mohamed, B.A.; Musaibah, A.S.; Divakar, D.D.; Eldwakhly, E. Graphene oxide-based experimental silane primers enhance shear bond strength between resin composite and zirconia. Eur. J. Oral Sci. 2019, 127, 570–576. [Google Scholar] [CrossRef]
- Escobar, M.; Souza, J.C.M.; Barra, G.M.O.; Fredel, M.C.; Özcan, M.; Henriques, B. On the synergistic effect of sulfonic functionalization and acidic adhesive conditioning to enhance the adhesion of PEEK to resin-matrix composites. Dent. Mater. 2021, 37, 741–754. [Google Scholar] [CrossRef]
- Ozcan, M.; Melo, R.M.; Souza, R.O.; Machado, J.P.; Felipe Valandro, L.; Botttino, M.A. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J. Mech. Behav. Biomed. Mater. 2013, 20, 19–28. [Google Scholar] [CrossRef]
- Sato, T.P.; Anami, L.C.; Melo, R.M.; Valandro, L.F.; Bottino, M.A. Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic. Oper. Dent. 2016, 41, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Şişmanoğlu, S.; Turunç-Oğuzman, R. Microshear bond strength of contemporary self-adhesive resin cements to CAD/CAM restorative materials: Effect of surface treatment and aging. J. Adhes. Sci. Technol. 2020, 34, 2484–2498. [Google Scholar] [CrossRef]
- Cekic-Nagas, I.; Ergun, G.; Egilmez, F.; Vallittu, P.K.; Lassila, L.V. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials. J. Prosthodont. Res. 2016, 60, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, P.; Pak Tunc, E.; Ongul, D.; Turp, V.; Bultan, O.; Karataslı, B. Curing efficiency of dual-cure resin cement under zirconia with two different light curing units. J. Istanb. Univ. Fac. Dent. 2015, 49, 8–16. [Google Scholar] [CrossRef]
- Mendonça, L.M.; Ramalho, I.S.; Lima, L.; Pires, L.A.; Pegoraro, T.A.; Pegoraro, L.F. Influence of the composition and shades of ceramics on light transmission and degree of conversion of dual-cured resin cements. J. Appl. Oral Sci. 2019, 27, e20180351. [Google Scholar] [CrossRef] [PubMed]
- Turp, V.; Ongul, D.; Gultekin, P.; Bultan, O.; Karataslı, B.; Pak Tunc, E. Polymerization efficiency of two dual-cure cements through dental ceramics. J. Istanb. Univ. Fac. Dent. 2015, 49, 10–18. [Google Scholar] [CrossRef]
- Butler, S.; Santos, G.C.; Santos, M.J.C. Do high translucency zirconia shades contribute to the degree of conversion of dual-cure resin cements? Quintessence Int. 2021, 53, 8–14. [Google Scholar] [CrossRef]
- Scotti, N.; Comba, A.; Cadenaro, M.; Fontanive, L.; Breschi, L.; Monaco, C.; Scotti, R. Effect of Lithium Disilicate Veneers of Different Thickness on the Degree of Conversion and Microhardness of a Light-Curing and a Dual-Curing Cement. Int. J. Prosthodont. 2016, 29, 384–388. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, F. Hardness of resin cement cured under different thickness of lithium disilicate-based ceramic. Chin. Med. J. 2011, 124, 3762–3767. [Google Scholar]
- Fidalgo-Pereira, R.; Carpio, D.; Torres, O.; Carvalho, O.; Silva, F.; Henriques, B.; Özcan, M.; Souza, J.C.M. The influence of inorganic fillers on the light transmission through resin-matrix composites during the light-curing procedure: An integrative review. Clin. Oral Investig. 2022, 26, 5575–5594. [Google Scholar] [CrossRef]
- Fidalgo-Pereira, R.; Carpio, D.M.E.; Carvalho, Ó.; Catarino, S.; Torres, O.; Souza, J.C.M. Relationship between the inorganic content and the polymerization of the organic matrix of resin composites for dentistry: A narrative review. RevSALUS-Rev. Científica Int. Rede Académica Das Ciências Saúde Lusofonia 2022, 4, 1. [Google Scholar] [CrossRef]
- Lopes-Rocha, L.; Ribeiro-Gonçalves, L.; Henriques, B.; Özcan, M.; Tiritan, M.E.; Souza, J.C.M. An integrative review on the toxicity of Bisphenol A (BPA) released from resin composites used in dentistry. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, V.; Silva, A.S.; Carvalho, O.; Henriques, B.; Silva, F.S.; Özcan, M.; Souza, J.C.M. The resin-matrix cement layer thickness resultant from the intracanal fitting of teeth root canal posts: An integrative review. Clin. Oral Investig. 2021, 25, 5595–5612. [Google Scholar] [CrossRef] [PubMed]
- Sokolowski, G.; Szczesio, A.; Bociong, K.; Kaluzinska, K.; Lapinska, B.; Sokolowski, J.; Domarecka, M.; Lukomska-Szymanska, M. Dental Resin Cements—The Influence of Water Sorption on Contraction Stress Changes and Hydroscopic Expansion. Materials 2018, 11, 973. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadi, M.; Petropoulou, A.; Zafiropoulou, M.; Zinelis, S.; Eliades, G. Degree of Conversion and Mechanical Properties of Modern Self-Adhesive Luting Agents. Appl. Sci. 2021, 11, 12065. [Google Scholar] [CrossRef]
- Pan, Y.; Xu, X.; Sun, F.; Meng, X. Surface morphology and mechanical properties of conventional and self-adhesive resin cements after aqueous aging. J. Appl. Oral Sci. 2018, 27, e20170449. [Google Scholar] [CrossRef]
- Zeller, D.K.; Fischer, J.; Rohr, N. Viscous behavior of resin composite cements. Dent. Mater. J. 2021, 40, 253–259. [Google Scholar] [CrossRef]
- Frassetto, A.; Navarra, C.O.; Marchesi, G.; Turco, G.; Di Lenarda, R.; Breschi, L.; Ferracane, J.L.; Cadenaro, M. Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dent. Mater. 2012, 28, 1032–1039. [Google Scholar] [CrossRef]
- Kurt, A.; Altintas, S.H.; Kiziltas, M.V.; Tekkeli, S.E.; Guler, E.M.; Kocyigit, A.; Usumez, A. Evaluation of residual monomer release and toxicity of self-adhesive resin cements. Dent. Mater. J. 2018, 37, 40–48. [Google Scholar] [CrossRef]
- Shim, J.S.; Kang, J.K.; Jha, N.; Ryu, J.J. Polymerization Mode of Self-Adhesive, Dual-Cured Dental Resin Cements Light Cured Through Various Restorative Materials. J. Esthet. Restor. Dent. 2017, 29, 209–214. [Google Scholar] [CrossRef]
- Albuquerque, P.; Duarte, M.F.B.; Moreno, M.B.P.; Schneider, L.F.J.; Moraes, R.R.; Cesar, P.F.; Rodrigues Filho, L.E. Physicochemical Properties and Microshear Bond Strength of Experimental Self-adhesive Resin Cements to Dentin or Yttria-stabilized Tetragonal Zirconia Polycrystal. J. Adhes. Dent. 2019, 21, 133–141. [Google Scholar] [CrossRef]
- Bragança, G.F.; Vianna, A.S.; Neves, F.D.; Price, R.B.; Soares, C.J. Effect of exposure time and moving the curing light on the degree of conversion and Knoop microhardness of light-cured resin cements. Dent. Mater. 2020, 36, e340–e351. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.J.; Castellanos, E.M.; Sinhoreti, M.; Oliveira, D.C.; Abdulhameed, N.; Geraldeli, S.; Sulaiman, T.A.; Roulet, J.F. The Use of Different Photoinitiator Systems in Photopolymerizing Resin Cements Through Ceramic Veneers. Oper. Dent. 2019, 44, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yao, C.; Huang, C.; Wang, Y. The effect of monowave and polywave light-polymerization units on the adhesion of resin cements to zirconia. J. Prosthet. Dent. 2019, 121, 549.e541–549.e547. [Google Scholar] [CrossRef]
- Rohr, N.; Müller, J.A.; Fischer, J. Influence of Ambient Temperature and Light-curing Moment on Polymerization Shrinkage and Strength of Resin Composite Cements. Oper. Dent. 2018, 43, 619–630. [Google Scholar] [CrossRef] [PubMed]
- D’Alpino, P.H.; Silva, M.S.; Vismara, M.V.; Di Hipólito, V.; Miranda González, A.H.; de Oliveira Graeff, C.F. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements. J. Mech. Behav. Biomed. Mater. 2015, 46, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Valentini, F.; Moraes, R.R.; Pereira-Cenci, T.; Boscato, N. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation. Microsc. Res. Tech. 2014, 77, 363–367. [Google Scholar] [CrossRef]
- Barbon, F.J.; Isolan, C.P.; Soares, L.D.; Bona, A.D.; de Oliveira da Rosa, W.L.; Boscato, N. A systematic review and meta-analysis on using preheated resin composites as luting agents for indirect restorations. Clin. Oral Investig. 2022, 26, 3383–3393. [Google Scholar] [CrossRef]
- Santi, M.R.; Lins, R.B.E.; Sahadi, B.O.; Denucci, G.C.; Soffner, G.; Martins, L.R.M. Influence of inorganic composition and filler particle morphology on the mechanical properties of self-adhesive resin cements. Restor. Dent. Endod. 2022, 47, e32. [Google Scholar] [CrossRef]
- Turp, V.; Turkoglu, P.; Sen, D. Influence of monolithic lithium disilicate and zirconia thickness on polymerization efficiency of dual-cure resin cements. J. Esthet. Restor. Dent. 2018, 30, 360–368. [Google Scholar] [CrossRef]
- de Figueiredo, E.Z.; de Souza Balbinot, G.; Castelo Branco Leitune, V.; Mezzomo Collares, F. Niobium silicate as a filler for an experimental photopolymerizable luting agent. J. Prosthodont. Res. 2021, 65, 25–30. [Google Scholar] [CrossRef]
- Ramos-Tonello, C.M.; Lisboa-Filho, P.N.; Arruda, L.B.; Tokuhara, C.K.; Oliveira, R.C.; Furuse, A.Y.; Rubo, J.H.; Borges, A.F.S. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties. Dent. Mater. 2017, 33, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Habekost, L.V.; Camacho, G.B.; Lima, G.S.; Ogliari, F.A.; Cubas, G.B.; Moraes, R.R. Nanoparticle loading level and properties of experimental hybrid resin luting agents. J. Prosthodont. 2012, 21, 540–545. [Google Scholar] [CrossRef]
- Ling, L.; Ma, Y.; Chen, Y.; Malyala, R. Physical, Mechanical, and Adhesive Properties of Novel Self-Adhesive Resin Cement. Int. J. Dent. 2022, 2022, 4475394. [Google Scholar] [CrossRef]
- De Souza, G.; Braga, R.R.; Cesar, P.F.; Lopes, G.C. Correlation between clinical performance and degree of conversion of resin cements: A literature review. J. Appl. Oral Sci. 2015, 23, 358–368. [Google Scholar] [CrossRef]
- Alkhudhairy, F.; Vohra, F.; Naseem, M.; Owais, M.M.; Amer, A.H.B.; Almutairi, K.B. Color stability and degree of conversion of a novel dibenzoyl germanium derivative containing photo-polymerized resin luting cement. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020917326. [Google Scholar] [CrossRef]
- el-Badrawy, W.A.; el-Mowafy, O.M. Chemical versus dual curing of resin inlay cements. J. Prosthet. Dent. 1995, 73, 515–524. [Google Scholar] [CrossRef]
- David-Pérez, M.; Ramírez-Suárez, J.P.; Latorre-Correa, F.; Agudelo-Suárez, A.A. Degree of conversion of resin-cements (light-cured/dual-cured) under different thicknesses of vitreous ceramics: Systematic review. J. Prosthodont. Res. 2022, 66, 385–394. [Google Scholar] [CrossRef]
- Franken, P.; Rodrigues, S.B.; Collares, F.M.; Samuel, S.M.W.; Leitune, V.C.B. Influence of N-(2-hydroxyethyl)acrylamide addition in light- and dual-cured resin cements. J. Dent. 2019, 90, 103208. [Google Scholar] [CrossRef]
- Rueggeberg, F.A.; Giannini, M.; Arrais, C.A.G.; Price, R.B.T. Light curing in dentistry and clinical implications: A literature review. Braz. Oral Res. 2017, 31, e61. [Google Scholar] [CrossRef]
- Braga, R.R.; Cesar, P.F.; Gonzaga, C.C. Mechanical properties of resin cements with different activation modes. J. Oral Rehabil. 2002, 29, 257–262. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Maravic, T.; Mancuso, E.; Josic, U.; Generali, L.; Comba, A.; Mazzoni, A.; Breschi, L. Influence of the activation mode on long-term bond strength and endogenous enzymatic activity of dual-cure resin cements. Clin. Oral Investig. 2022, 26, 1683–1694. [Google Scholar] [CrossRef]
- Par, M.; Marovic, D.; Skenderovic, H.; Gamulin, O.; Klaric, E.; Tarle, Z. Light transmittance and polymerization kinetics of amorphous calcium phosphate composites. Clin. Oral Investig. 2017, 21, 1173–1182. [Google Scholar] [CrossRef]
- Novais, V.R.; Raposo, L.H.; Miranda, R.R.; Lopes, C.C.; Simamoto, P.C.J.; Soares, C.J. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes. J. Appl. Oral Sci. 2017, 25, 61–68. [Google Scholar] [CrossRef]
- Turker, N.; Buyukkaplan, U.; Başar, E.K.; Özarslan, M.M. The effects of different surface treatments on the shear bond strengths of two dual-cure resin cements to CAD/CAM restorative materials. J. Adv. Prosthodont. 2020, 12, 189–196. [Google Scholar] [CrossRef]
- Dede, D.; Sahin, O.; Özdemir, O.S.; Yilmaz, B.; Celik, E.; Köroğlu, A. Influence of the color of composite resin foundation and luting cement on the final color of lithium disilicate ceramic systems. J. Prosthet. Dent. 2017, 117, 138–143. [Google Scholar] [CrossRef]
- Berger, S.B.; Palialol, A.R.; Cavalli, V.; Giannini, M. Characterization of water sorption, solubility and filler particles of light-cured composite resins. Braz. Dent. J. 2009, 20, 314–318. [Google Scholar] [CrossRef]
- Palialol, A.R.; Martins, C.P.; Dressano, D.; Aguiar, F.H.B.; Gonçalves, L.S.; Marchi, G.M.; Pfeifer, C.S.; Lima, A.F. Improvement on properties of experimental resin cements containing an iodonium salt cured under challenging polymerization conditions. Dent. Mater. 2021, 37, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Augusto, C.R.; Leitune, V.C.B.; Ogliari, F.A.; Collares, F.M. Influence of an iodonium salt on the properties of dual-polymerizing self-adhesive resin cements. J. Prosthet. Dent. 2017, 118, 228–234. [Google Scholar] [CrossRef]
- Butterhof, M.; Ilie, N. Predicting transmitted irradiance through CAD/CAM resin composite crowns in a simulated clinical model. Dent. Mater. 2021, 37, 998–1008. [Google Scholar] [CrossRef]
- Acquaviva, P.A.; Cerutti, F.; Adami, G.; Gagliani, M.; Ferrari, M.; Gherlone, E.; Cerutti, A. Degree of conversion of three composite materials employed in the adhesive cementation of indirect restorations: A micro-Raman analysis. J. Dent. 2009, 37, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, A.C.; Goncalves, L.S.; Lima, A.F.; Palialol, A.R.; Consani, S. Influence of light-curing unit on the network structure and mechanical properties of model resin cements containing diphenyliodonium compared with a commercial reference. Stomatologija 2018, 20, 119–124. [Google Scholar] [PubMed]
- Lopes Cde, C.; Rodrigues, R.B.; Silva, A.L.; Simamoto Júnior, P.C.; Soares, C.J.; Novais, V.R. Degree of Conversion and Mechanical Properties of Resin Cements Cured Through Different All-Ceramic Systems. Braz. Dent. J. 2015, 26, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A.; Abdulmajeed, A.A.; Donovan, T.E.; Ritter, A.V.; Lassila, L.V.; Vallittu, P.K.; Närhi, T.O. Degree of conversion of dual-polymerizing cements light polymerized through monolithic zirconia of different thicknesses and types. J. Prosthet. Dent. 2015, 114, 103–108. [Google Scholar] [CrossRef]
- Caprak, Y.O.; Turkoglu, P.; Akgungor, G. Does the Translucency of Novel Monolithic CAD/CAM Materials Affect Resin Cement Polymerization with Different Curing Modes? J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2018, 28, e572–e579. [Google Scholar] [CrossRef] [PubMed]
- Aldhafyan, M.; Silikas, N.; Watts, D.C. Influence of curing modes on thermal stability, hardness development and network integrity of dual-cure resin cements. Dent. Mater. 2021, 37, 1854–1864. [Google Scholar] [CrossRef]
- Yang, B.; Huang, Q.; Holmes, B.; Guo, J.; Li, Y.; Heo, Y.; Chew, H.P.; Wang, Y.; Fok, A. Influence of curing modes on the degree of conversion and mechanical parameters of dual-cured luting agents. J. Prosthodont. Res. 2020, 64, 137–144. [Google Scholar] [CrossRef]
- Khanlar, L.N.; Abdou, A.; Takagaki, T.; Mori, S.; Ikeda, M.; Nikaido, T.; Zandinejad, A.; Tagami, J. The effects of different silicatization and silanization protocols on the bond durability of resin cements to new high-translucent zirconia. Clin. Oral Investig. 2022, 26, 3547–3561. [Google Scholar] [CrossRef]
- Kelch, M.; Stawarczyk, B.; Mayinger, F. Time-dependent degree of conversion, Martens parameters, and flexural strength of different dual-polymerizing resin composite luting materials. Clin. Oral Investig. 2022, 26, 1067–1076. [Google Scholar] [CrossRef]
- Faria, E.S.A.L.; Pfeifer, C.S. Effectiveness of high-power LEDs to polymerize resin cements through ceramics: An in vitro study. J. Prosthet. Dent. 2017, 118, 631–636. [Google Scholar] [CrossRef]
- Valentino, T.A.; Borges, G.A.; Borges, L.H.; Vishal, J.; Martins, L.R.; Correr-Sobrinho, L. Dual resin cement knoop hardness after different activation modes through dental ceramics. Braz. Dent. J. 2010, 21, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Karabela, M.M.; Sideridou, I.D. Synthesis and study of physical properties of dental light-cured nanocomposites using different amounts of a urethane dimethacrylate trialkoxysilane coupling agent. Dent. Mater. 2011, 27, 1144–1152. [Google Scholar] [CrossRef]
- Musanje, L.; Darvell, B.W. Curing-light attenuation in filled-resin restorative materials. Dent. Mater. 2006, 22, 804–817. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, X.P.; Tan, R.X. Effect of Light-Cured Resin Cement Application on Translucency of Ceramic Veneers and Light Transmission of LED Polymerization Units. J. Prosthodont. 2019, 28, e376–e382. [Google Scholar] [CrossRef]
- Öztürk, E.; Bolay, Ş.; Hickel, R.; Ilie, N. Effects of ceramic shade and thickness on the micro-mechanical properties of a light-cured resin cement in different shades. Acta Odontol. Scand. 2015, 73, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Heffernan, M.J.; Aquilino, S.A.; Diaz-Arnold, A.M.; Haselton, D.R.; Stanford, C.M.; Vargas, M.A. Relative translucency of six all-ceramic systems. Part I: Core materials. J. Prosthet. Dent. 2002, 88, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Rasetto, F.H.; Driscoll, C.F.; Prestipino, V.; Masri, R.; von Fraunhofer, J.A. Light transmission through all-ceramic dental materials: A pilot study. J. Prosthet. Dent. 2004, 91, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Giri, T.K.; Mukherjee, S. An in vitro study to compare the influence of different all-ceramic systems on the polymerization of dual-cure resin cement. J. Indian Prosthodont. Soc. 2019, 19, 58–65. [Google Scholar] [CrossRef]
- Lührs, A.K.; Pongprueksa, P.; De Munck, J.; Geurtsen, W.; Van Meerbeek, B. Curing mode affects bond strength of adhesively luted composite CAD/CAM restorations to dentin. Dent. Mater. 2014, 30, 281–291. [Google Scholar] [CrossRef]
- Blumentritt, F.B.; Cancian, G.; Saporiti, J.M.; de Holanda, T.A.; Barbon, F.J.; Boscato, N. Influence of feldspar ceramic thickness on the properties of resin cements and restorative set. Eur. J. Oral Sci. 2021, 129, e12765. [Google Scholar] [CrossRef]
- Butterhof, M.; Ilie, N. Mathematical model for assessing true irradiance received by luting materials while curing through modern CAD/CAM resin composites. Dent. Mater. 2020, 36, e255–e265. [Google Scholar] [CrossRef] [PubMed]
- Turgut, S.; Bagis, B.; Ayaz, E.A. Achieving the desired colour in discoloured teeth, using leucite-based CAD-CAM laminate systems. J. Dent. 2014, 42, 68–74. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, S.H.; Lee, J.B.; Han, J.S.; Yeo, I.S.; Ha, S.R. Effect of the amount of thickness reduction on color and translucency of dental monolithic zirconia ceramics. J. Adv. Prosthodont. 2016, 8, 37–42. [Google Scholar] [CrossRef]
- Ongun, S.; Önöral, Ö.; Günal-Abduljalil, B. Evaluation of shade correspondence between current monolithic CAD/CAM blocks and target shade tab by considering the influence of cement shade and restorative material thickness. Odontology 2021, 109, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Inokoshi, M.; Pongprueksa, P.; De Munck, J.; Zhang, F.; Vanmeensel, K.; Minakuchi, S.; Vleugels, J.; Naert, I.; Van Meerbeek, B. Influence of Light Irradiation Through Zirconia on the Degree of Conversion of Composite Cements. J. Adhes. Dent. 2016, 18, 161–171. [Google Scholar] [CrossRef]
- Lümkemann, N.; Pfefferle, R.; Jerman, E.; Sener, B.; Stawarczyk, B. Translucency, flexural strength, fracture toughness, fracture load of 3-unit FDPs, Martens hardness parameter and grain size of 3Y-TZP materials. Dent. Mater. 2020, 36, 838–845. [Google Scholar] [CrossRef]
- Lee, S.Y.; Cho, C.B.; Koak, J.Y.; Yang, S.E. The effect of zirconia thickness and curing time on shear bond strength of dual cure resin cement. Dent. Mater. J. 2016, 35, 132–137. [Google Scholar] [CrossRef]
- Gonzaga, C.C.; Cesar, P.F.; Miranda, W.G., Jr.; Yoshimura, H.N. Slow crack growth and reliability of dental ceramics. Dent. Mater. 2011, 27, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Okutan, Y.; Kandemir, B.; Donmez, M.B.; Yucel, M.T. Effect of the thickness of CAD-CAM materials on the shear bond strength of light-polymerized resin cement. Eur. J. Oral Sci. 2022, 130, e12892. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, T.A.; da Silva, N.R.; Carvalho, R.M. Cements for use in esthetic dentistry. Dent. Clin. N. Am. 2007, 51, 453–471. [Google Scholar] [CrossRef]
- Araoka, D.; Hosaka, K.; Nakajima, M.; Foxton, R.; Thanatvarakorn, O.; Prasansuttiporn, T.; Chiba, A.; Sato, K.; Takahashi, M.; Otsuki, M.; et al. The strategies used for curing universal adhesives affect the micro-bond strength of resin cement used to lute indirect resin composites to human dentin. Dent. Mater. J. 2018, 37, 506–514. [Google Scholar] [CrossRef]
- Ansarifard, E.; Panbehzan, Z.; Giti, R. Evaluation of microhardness and water sorption/solubility of dual-cure resin cement through monolithic zirconia in different shades. J. Indian Prosthodont. Soc. 2021, 21, 50–56. [Google Scholar] [CrossRef]
- Samimi, P.; Kaveh, S.; Khoroushi, M. Effect of Delayed Light-Curing Through a Zirconia Disc on Microhardness and Fracture Toughness of Two Types of Dual-Cure Cement. J. Dent. 2018, 15, 339–350. [Google Scholar] [CrossRef]
- Castellanos, M.; Delgado, A.J.; Sinhoreti, M.A.C.; de Oliveira, D.; Abdulhameed, N.; Geraldeli, S.; Roulet, J.F. Effect of Thickness of Ceramic Veneers on Color Stability and Bond Strength of Resin Luting Cements Containing Alternative Photoinitiators. J. Adhes. Dent. 2019, 21, 67–76. [Google Scholar] [CrossRef]
- AlShaafi, M.M.; AlQahtani, M.Q.; Price, R.B. Effect of exposure time on the polymerization of resin cement through ceramic. J. Adhes. Dent. 2014, 16, 129–135. [Google Scholar] [CrossRef]
- AlQahtani, M.Q.; AlShaafi, M.M.; Price, R.B. Effects of single-peak vs polywave light-emitting diode curing lights on the polymerization of resin cement. J. Adhes. Dent. 2013, 15, 547–551. [Google Scholar] [CrossRef]
- Ilie, N. Transmitted irradiance through ceramics: Effect on the mechanical properties of a luting resin cement. Clin. Oral Investig. 2017, 21, 1183–1190. [Google Scholar] [CrossRef]
- Çetindemir, A.B.; Şermet, B.; Öngül, D. The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement. J. Adv. Prosthodont. 2018, 10, 291–299. [Google Scholar] [CrossRef]
- Furuse, A.Y.; Santana, L.O.C.; Rizzante, F.A.P.; Ishikiriama, S.K.; Bombonatti, J.F.; Correr, G.M.; Gonzaga, C.C. Delayed Light Activation Improves Color Stability of Dual-Cured Resin Cements. J. Prosthodont. 2018, 27, 449–455. [Google Scholar] [CrossRef]
- Barutcigil, K.; Büyükkaplan, U. The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements. J. Adv. Prosthodont. 2020, 12, 61–66. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fidalgo-Pereira, R.; Torres, O.; Carvalho, Ó.; Silva, F.S.; Catarino, S.O.; Özcan, M.; Souza, J.C.M. A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. Materials 2023, 16, 1560. https://doi.org/10.3390/ma16041560
Fidalgo-Pereira R, Torres O, Carvalho Ó, Silva FS, Catarino SO, Özcan M, Souza JCM. A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. Materials. 2023; 16(4):1560. https://doi.org/10.3390/ma16041560
Chicago/Turabian StyleFidalgo-Pereira, Rita, Orlanda Torres, Óscar Carvalho, Filipe S. Silva, Susana O. Catarino, Mutlu Özcan, and Júlio C. M. Souza. 2023. "A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry" Materials 16, no. 4: 1560. https://doi.org/10.3390/ma16041560
APA StyleFidalgo-Pereira, R., Torres, O., Carvalho, Ó., Silva, F. S., Catarino, S. O., Özcan, M., & Souza, J. C. M. (2023). A Scoping Review on the Polymerization of Resin-Matrix Cements Used in Restorative Dentistry. Materials, 16(4), 1560. https://doi.org/10.3390/ma16041560