Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Computed Tomograph
2.3. Linear Attenuation Coefficient Corrections
3. Materials Reconstruction
3.1. Mathematical Formulation
3.2. Reconstruction Implementation
3.3. Direct Data Fitting Term
3.4. Data Regularization Term
4. Results
5. Discussion
5.1. System Calibration
5.2. Effective Atomic Number and Density Calculation
5.3. Material Identification
6. Conclusions
- To elaborate a technique to compensate for beam hardening and other non-linear effects which could natively influence the energy dependency of the Linear Attenuation Coefficient (LAC) between 20 and 160 keV, i.e., the energy domain currently utilized in the X-ray MSCT;
- To develop a 3D fast reconstruction algorithm able to furnish confident results concerning the local LAC values corresponding to each utilized energy bin, i.e., 64 values from 19.8 to 158.4 keV;
- To create a set of algorithms permitting a simultaneous determination of density and the affective atomic number of investigated materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CPU | Central Processing Unit |
CT | Computed Tomography |
CRM | Certified Reference Material |
LAC | Linear Attenuation Coefficient |
MSCT | Multy-Spectral Computed Tomography |
Polyethylene | PE |
Polyethylene terphtalate | PET |
Polytetrafluoroethylene | PTFE |
Polyvinyl-chloride | PVC |
Appendix A
Material | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
PET * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.09 | 0.24 | 0.44 |
PET ** | 0.74 | 0.54 | 0.48 | 0.45 | 0.45 | 0.46 | 0.46 | 0.47 | 0.50 | 0.52 |
PTFE * | 0.00 | 0.00 | 0.02 | 0.08 | 0.27 | 0.58 | 0.94 | 0.74 | 0.52 | 0.38 |
PTFE ** | 0.16 | 0.29 | 0.37 | 0.42 | 0.48 | 0.52 | 0.53 | 0.56 | 0.60 | 0.71 |
PE * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PE ** | 0.08 | 0.35 | 0.45 | 0.51 | 0.66 | 0.71 | 0.76 | 0.81 | 0.83 | 0.84 |
PVC * | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
PVC ** | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Material | 0.84 | 2.80 | 7.65 | 21.60 | 31.50 | 41.60 | 51.90 | |||
Al * | 0.56 | 0.63 | 0.69 | 0.02 | 0.01 | 0.01 | 0.01 | |||
Al ** | 0.56 | 0.63 | 0.69 | 0.02 | 0.01 | 0.01 | 0.01 |
References
- Yang, L.; Guan, D.; Qu, A.; Li, Q.; Ge, Y.; Liang, H.; Dong, H.; Leng, S.; Liu, Y.; Zhang, L.; et al. Thermotactic habit of gas hydrate growth enables a fast transformation of melting ice. Appl. Energy 2032, 331, 120372. [Google Scholar] [CrossRef]
- Honkanen, A.P.; Huotari, S. Monochromatic computed tomography using laboratory-scale setup. Sci. Rep. 2023, 13, 363. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.A.; Hampe, O.; Mews, J.; Günter, C.; Milke, R.; Witzmann, F.; Savic, L.J.; Hecht, L.; Meister, S.; Hamm, B.; et al. Quantitative dual-energy CT as a nondestructive tool to identify indicators for fossilized bone in vertebrate paleontology. Sci. Rep. 2022, 12, 16407. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, S.G.; Martz, H.E.; Aufderheide, M.B.; Brown, W.D.; Champley, K.M.; Kallman, J.S.; Roberson, G.P.; Schneberk, D.; Seetho, I.M.; Smith, J.A. System independent characterization of materials using dual-energy computed tomography. IEEE Trans. Nucl. Sci. 2016, 63, 341–350. [Google Scholar] [CrossRef]
- Parker, G.R.; Eastwood, D.S.; Storm, M.; Vitharana, K.; Heatwole, E.M.; Lopez-Pulliam, I.; Broilo, R.M.; Dickson, P.M.; Martinez, A.; Rau, C.; et al. 4D micro-scale, phase-contrast X-ray imaging and computed tomography of HMX-based polymer-bonded explosives during thermal runaway. Combus. Flame 2021, 226, 478–489. [Google Scholar] [CrossRef]
- Rebuffel, V.; Rinkel, J.; Tabary, J.; Verger, L. New perspectives of X-ray techniques for explosive detection based on CdTe/CdZnTe spectrometric detectors. In Proceedings of the International Symposium on Digital Industrial Radiology and Computed Tomography, Berlin, Germany, 20–21 June 2011; Volume 2, pp. 1–8. Available online: https://www.multixdetection.com/article/dir2011/papers/we21.pdf (accessed on 14 January 2023).
- Eger, E.; Do, S.; Ishwar, P.; Karl, W.C.; Pien, H. A learning-based approach to explosives detection using Multi-Energy X-ray Computed Tomography. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 2004–2007. [Google Scholar] [CrossRef]
- Greenberg, J.A.; Carpenter, J. X-ray diffraction for explosives detection. In Counterterrorist Detection Techniques of Explosives, 2nd ed.; Kaga, A., Oxley, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Chapter 9. [Google Scholar] [CrossRef]
- Sinha, V.; Srivastava, A.; Lee, H.K.; Liu, X. Feasibility studies on explosive detection and homeland security applications using a neutron and X-ray combined computed tomography system. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV; Fountain, A.W., Ed.; SPIE: Baltimore, MD, USA, 2013; Volume 8710, p. 87100W. [Google Scholar] [CrossRef]
- Izake, E.L.; Sundarajoo, S.; Olds, W.; Cletus, B.; Jaatinen, E.; Fredericks, P.M. Standoff Raman spectrometry for the non-invasive detection of explosives precursors in highly fluorescing packaging. Talanta 2013, 103, 20–27. [Google Scholar] [CrossRef]
- Gudmundson, E.; Jakobsson, A.; Stoica, P. NQR-based explosives detection—An overview. In Proceedings of the 2009 International Symposium on Signals, Circuits and Systems, Iasi, Romania, 9–10 July 2009; pp. 1–4. [Google Scholar] [CrossRef]
- Kendziora, C.A.; Furstenberg, R.; Jones, R.M.; Papantonakis, M.; Nguyen, V.; McGill, R.A. Remote Explosives Detection (RED) by infrared photothermal imaging. MRS Proc. 2012, 1405, Mrsf11-1405-y03-01. [Google Scholar] [CrossRef]
- Fornaro, J.; Leschka, S.; Hibbeln, D.; Butler, A.; Anderson, N.; Pache, G.; Scheffel, H.; Wildermuth, S.; Alkadhi, H.; Stolzmann, P. Dual- and multi-energy CT: Approach to functional imaging. Insights Imaging 2011, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, M.C.; Thrower, S.L.; Ger, R.B.; Leng, S.; Court, L.E.; Brock, K.K.; Tamm, E.P.; Cressman, E.N.; Cody, D.D.; Layman, R.R. Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement. Med. Phys. 2020, 47, 3752–3771. [Google Scholar] [CrossRef]
- National Research Council, Division on Engineering and Physical Sciences, Explosives detection using computed tomography. In Engineering Aviation Security Environments—Reduction of False Alarms in Computed Tomography- Based Screening of Checked Baggage; The National Academies Press: Washington, DC, USA, 2013. [CrossRef]
- Abbaspour, S.; Mahmoudian, B.; Islamian, J.P. Cadmium Telluride semiconductor detector for improved spatial and energy resolution radioisotopic imaging. World J. Nucl. Med. 2017, 16, 101–107. [Google Scholar] [CrossRef]
- Seller, P.; Bell, S.; Cernik, R.; Christodoulou, C.; Egan, C.; Gaskin, J.; Jacques, S.; Pani, S.; Ramsey, B.; Reid, C.; et al. Pixellated Cd(Zn)Te high-energy X-ray instrument. J. Instrument. 2021, 6. [Google Scholar] [CrossRef]
- Busi, M.; Mohan, K.A.; Dooraghi, A.A.; Champley, K.M.; Martz, H.E.; Olsen, U.L. Method for system-independent material characterization from spectral X-ray CT. NDT E Int. 2019, 107, 102136. [Google Scholar] [CrossRef]
- Garnett, R. A comprehensive review of dual-energy and multi-spectral computed tomography. Clin. Imaging 2020, 67, 160–169. [Google Scholar] [CrossRef]
- Devadithya, S.; Castanon, D. Enhanced material estimation with multi-spectral CT. Electron. Imag. 2021, I, 229-1–229-6. [Google Scholar] [CrossRef]
- Jumanazarov, D.; Koo, J.; Busi, M.; Poulsen, H.F.; Olsen, U.L.; Iovea, M. System-independent material classification through X-ray attenuation. NDT E Int. 2020, 116, 102336. [Google Scholar] [CrossRef]
- Jumanazarov, D.; Koo, J.; Kehres, J.; Poulsen, H.F.; Olsen, U.L.; Iovea, M. Material classification from sparse spectral X-ray CT using vectorial total variation based on L infinity norm. Mat. Character 2022, 187, 111864. [Google Scholar] [CrossRef]
- Clark, D.P.; Badea, C.T. Data-efficient methods for multi-channel X-ray CT reconstruction. In Medical Imaging 2018: Physics of Medical Imaging; SPIE: Houston, TX, USA, 2018; Volume 10573. [Google Scholar] [CrossRef]
- Vlasov, V.V.; Konovalov, A.B.; Kolchugin, S.V. Hybrid algorithm for few-views computed tomography of strongly absorbing media: Algebraic reconstruction, TV-regularization, and adaptive segmentation. J. Electron. Imag. 2018, 27, 043006. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, L.; Yu, Z.; Shi, Y.; Mu, C.; Xu, M. Deep-IRTarget: An automatic target detector in infrared imagery using dual-domain feature extraction and allocation. IEEE Transact. Multimed. 2022, 24, 1735–1749. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, S.; Zhang, Q.; Xu, L.; He, Y.; Zhang, F. Graph-based few-shot learning with transformed feature propagation and optimal class allocation. Neurocomputing 2022, 470, 247–256. [Google Scholar] [CrossRef]
- Zach, M.; Kobler, E.; Pock, T. Computed Tomography reconstruction using generative energy-based priors. arXiv 2022. [Google Scholar] [CrossRef]
- Baguer, D.O.; Leuschner, J.; Schmidt, M. Computed tomography reconstruction using deep image prior and learned reconstruction methods. Inverse Probl. 2020, 36, 094004. Available online: https://iopscience.iop.org/article/10.1088/1361-6420/aba415/pdf (accessed on 15 January 2023). [CrossRef]
- Brooks, R.A.; Chiro, G.D. Beam hardening in X-ray reconstructive tomography. Phys. Med. Biol. 1976, 21, 390–398. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeont. Electron. 2001, 4, 9. Available online: https://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 16 March 2022).
- Kazantsev, D.; Jørgensen, J.S.; Andersen, M.S.; Lionheart, W.R.B.; Lee, P.D.; Withers, P.J. Joint image reconstruction method with correlative multi-channel prior for x-ray spectral computed tomography. Inverse Probl. 2018, 34, 064001. [Google Scholar] [CrossRef]
- Siddon, R.L. Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 1985, 12, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.; Moeller, M.; Sbert, C.; Cremers, D. On the implementation of collaborative TV regularization: Application to Cartoon+Texture decomposition. Image Process. On-Line 2016, 5, 27–74. [Google Scholar] [CrossRef] [Green Version]
- Langeveld, W.G.J. Effective Atomic Number, Mass Attenuation Coefficient Parameterization, and Implications for High-Energy X-ray Cargo Inspection Systems. Phys. Procedia 2017, 90, 291–304. [Google Scholar] [CrossRef]
- van Aarle, W.; Palenstijn, W.J.; Cant, J.; Janssens, E.; Bleichrodt, F.; Dabravolski, A.; De Beenhouwer, J.; Batenburg, K.J.; Sijbers, J. Fast and Flexible X-ray Tomography Using the ASTRA Toolbox. Optics Express 2016, 24, 25129–25147. [Google Scholar] [CrossRef] [Green Version]
CRM | Zeff | (g/cm3) |
---|---|---|
PET | 5.65 | 1.38 |
PTFE | 7.30 | 1.45 |
PVC | 9.20 | 1.37 |
PPH | 7.60 | 0.91 |
Al | 13 | 2.70 |
Total Execution Time (s) | RAM Usage | Average CPU Usage |
---|---|---|
23.37 | 1.33 GB | 88% |
Spearman’s | Tukey’s Q | Mann-Whitney | Dunnett | |
---|---|---|---|---|
Literature | Present Work | Present Work | Present Work | Present Work |
[22] | 0.87 | 0.53 | 0.59 | 0.67 |
[35] | 0.76 | 0.00 | 0.1 | 0.01 |
Material | Zeff Certified | Zeff Experimental | Relative Error | Density Certified | Density Experimental | Relative Error |
---|---|---|---|---|---|---|
Water | 7.42 | 7.64 | 2.94 | 1.00 | 1.03 | 2.98 |
PA12 | 7.20 | 6.99 | −2.87 | 1.02 | 1.01 | −1.11 |
XM03X | 7.20 | 7.28 | 1.07 | 1.68 | 1.64 | −2.65 |
XM04X1 | 7.30 | 7.26 | −0.56 | 1.47 | 1.50 | 2.04 |
XM08X | 7.50 | 7.28 | −2.94 | 1.00 | 1.03 | 2.98 |
t-test | same mean | 0.81 | 0.62 | |||
Wilcoxon test | same median | 0.87 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iovea, M.; Stanciulescu, A.; Hermann, E.; Neagu, M.; Duliu, O.G. Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography. Materials 2023, 16, 1654. https://doi.org/10.3390/ma16041654
Iovea M, Stanciulescu A, Hermann E, Neagu M, Duliu OG. Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography. Materials. 2023; 16(4):1654. https://doi.org/10.3390/ma16041654
Chicago/Turabian StyleIovea, Mihai, Andrei Stanciulescu, Edward Hermann, Marian Neagu, and Octavian G. Duliu. 2023. "Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography" Materials 16, no. 4: 1654. https://doi.org/10.3390/ma16041654
APA StyleIovea, M., Stanciulescu, A., Hermann, E., Neagu, M., & Duliu, O. G. (2023). Multi-Energy and Fast-Convergence Iterative Reconstruction Algorithm for Organic Material Identification Using X-ray Computed Tomography. Materials, 16(4), 1654. https://doi.org/10.3390/ma16041654