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Abstract: The paper aimed to study the evolution of the microstructure and texture gradient of a
321-type metastable austenitic stainless steel during cold rotary swaging. Cold rotary swaging was
carried out with a reduction of up to 90% at ambient temperature. Pronounced gradients of the
α’-martensite volume fraction, the axial texture of austenite (〈111〉 and 〈001〉) and α’-martensite
(〈101〉), and non-uniform microhardness distribution along the rod diameter were obtained after a
reduction of 80–90%. According to the finite element analysis, moderate tensile stresses were attained
in the center, whereas high compressive stresses operated at the edge. Due to water cooling of the
rod surface and heating of the rod center during processing, a temperature gradient was also derived.
Features of strain-induced martensitic transformation, microstructure and texture evolution, and
non-uniform hardening during cold rotary swaging were discussed.

Keywords: metastable austenitic stainless steel; gradient microstructure; texture; strain-induced
martensitic transformation; microhardness distribution; finite element simulation; rotary swaging

1. Introduction

Metastable austenitic stainless steels (MASSs) possess attractive corrosion resistance,
excellent ductility, and good impact toughness [1–3]. However, low yield strength is
expected. To increase the yield strength value, various conventional deformation techniques
have been applied [4–8]. However, as has been shown earlier [8,9], the strengthening of
MASS by plastic deformation results in decreasing the ductility and impact toughness.
The strength–ductility trade-off might be overcome via novel microstructural design by
producing gradient structures [10]. Generally, the gradient structure consists of layers with a
gradual change in the grain size, phase volume composition, or phase morphology from the
surface to the workpiece core. In such structures, soft/hard interfaces can be distinguished
that additionally lead to the multiplication and accumulation of geometrically necessary
dislocations and the development of back-stress hardening [11,12]. Furthermore, different
grain sizes of metastable austenite are associated with various stability, which enhances the
strain-hardening ability throughout multi-stage martensitic transformation [13,14].

Nowadays, torsional deformation [15–17], surface mechanical rolling treatment (SMRT) [18–20],
ultrasonic impact treatment [21,22], and surface mechanical attrition treatment [13,23] have
been applied to produce the gradient structure. For instance, a good strength–ductility
combination of an AISI 304 MASS can be received by obtaining austenitic domains with
various dimensions in depth [16]. For an AISI 316L MASS with the gradient structure, the
inhibition of crack nucleation and the accommodation of cyclic plastic strain amplitude
were attained, which essentially enhance the low and high fatigue properties [18]. Aside
from the excellent strength–ductility combination, SMRT and following annealing of the
AISI 316L MASS resulted in increased corrosion resistance [19]. Evidently, due to the
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small sample dimensions, substantial laboratory applications may be considered for the
above-mentioned techniques.

On the other hand, rotary swaging may be considered as a promising industrial
method with high performance for producing gradient materials via bulk-dominated
plastic deformation [24]. For instance, gradients of axial two-component (〈001〉 and 〈111〉)
austenitic texture and microstructure were detected in a 316-type austenitic stainless steel
after cold rotary swaging [25]. Furthermore, cold rotary swaging of an AISI 321 MASS with
a 90% reduction was accompanied by the formation of the α’-martensite volume fraction
gradient from the rod core to the surface that, after low-temperature annealing, resulted
in an extraordinary strength–toughness combination [26]. It is worth noting that close to
hydrostatic compression, the capacity for the accumulation of high plastic strain without
failure and the non-uniform stress condition and accumulation of plastic strain are the
main features of swaging, affecting the structure and texture evolution [24–27]. Meanwhile,
the temperature gradient is also expected to affect the texture development [28], strain-
induced martensitic transformation, and twinning during processing [25,29]. Although
many profound studies of the microstructure evolution during cold rotary swaging [30–32]
have been conducted, the evolution of the microstructure and texture gradient of MASS
during rotary swaging has not been investigated properly. Thus, the purpose of the current
paper is to study the evolution of the microstructure and texture gradient of a MASS during
cold rotary swaging.

2. Materials and Methods
2.1. Program Material Processing

The industrial 321-type MASS was studied as the program material. The program ma-
terial possessed the following chemical composition (wt.%): C–0.07%, Cr–18.75%, Ni–9.2%,
Mn–1.12%, Si–0.39%, Ti–0.59%, S–0.019%, P–0.005%, Fe–balance. A rod with a diameter of
33 mm was received by hot rolling at 900–1220 ◦C with the following air-cooling to room
temperature. Then, the rod was subjected to annealing at 1050 ◦C for 2 h with water cooling,
which was considered an the as-received condition. After quenching, cold rotary swaging
was carried out using an SXP-16 rotary swaging machine (GFM, Steyr, Austria) with a
workpiece feeding rate of 180 mm/min, a stroke frequency of 1000 blows per minute, and a
workpiece rotation of 25 rpm (rotations per minute) [25]. The scheme of rotary swaging is
presented in Figure 1. The rod was water-cooled during processing. Five steps of swaging
were performed: from ø33 to ø29 mm, from ø29 to ø25 mm, from ø25 to ø20 mm, from ø20
to ø14 mm, and from ø14 to ø11.5 mm, which equated to an ~20%, ~40%, ~60%, ~80%, and
~90% reduction in the cross-section area, respectively.
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Figure 1. Scheme of cold rotary swaging. Red arrows indicate the movement direction of the rod and
hammers during processing.

2.2. Structure and Texture Characterization

The cross-section microstructure was characterized using scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). For this purpose, samples were cut by
an electrical discharge machine and prepared by means of conventional metallographic
techniques, followed by electro-polishing in an electrolyte consisting of 5% perchloric acid,
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35% butanol, and 60% methanol at room temperature with an applied voltage of 26 V.
SEM observations were conducted using an FEI Nova NanoSEM 450 scanning electron
microscope (FEI Company, Hillsboro, OR, USA) equipped with an EDAX Hikari electron
backscatter diffraction (EBSD) camera (EDAX, Mahwah, NJ, USA). The EBSD analysis was
carried out with a scanning step of 100 nm. To improve the EBSD data quality, only results
with a confidence index (CI) ≥ 0.1 were used for the subsequent evaluation of texture. TEM
was conducted using a JEOL JEM-2100 electron microscope (JEOL, Akishima, Tokyo, Japan)
with an accelerating voltage of 200 kV. The structural parameters were estimated on bright-
and dark-field TEM photographs.

To evaluate the phase composition, X-ray diffraction (XRD) and eddy-current testing
were applied. XRD was performed using a Rigaku Ultima-IV X-ray diffractometer (Rigaku,
Akishima, Tokyo, Japan) in CuKα-radiation. Standard Bragg–Brentano geometry in the 2Θ
angle ranging from 40 to 100◦ was applied. Estimation of the ferromagnetic BCC-phase
volume fraction was carried out along the diameter using a FERRITSCOPE FMP30 eddy-
current tester (Helmut Fischer Holding GmbH, Sindelfingen-Maichingen, Germany). First,
the eddy-current tester was calibrated by the standard samples. Five or more measurements
were conducted and averaged.

2.3. Microhardness Testing

The Vickers microhardness tests were carried out using a Wolpert 402MVD semi-
automatic hardness tester (Wolpert, Maastricht, Netherlands) by a diamond pyramid
indenter with a base angle of 136◦. The testing was performed along the rod diameter of
the cross-sections with a step of 0.5–0.7 mm, a load of 200 g, and a soaking of 15 s. The
measurements were conducted in two perpendicular pathways along a rod diameter for
each condition followed by the averaging of the results.

2.4. Finite Element Simulation

The finite element simulation was performed by the QFORM software (V. 9.0.7, Quan-
torForm, Moscow, Russia) according to the above-mentioned parameters of cold rotary
swaging. Four hammers realizing deformation and a pusher performing the axial and
rotational movement of the workpiece were included in the basic model. An adaptive finite
element net with a mesh size of 0.2–6 mm was applied. The number of meshes was altered
from 20,000 to 200,000. By reducing the heating of the workpiece, swaging was realized
in a water environment with a temperature of 40 ◦C. The contact surface was used for
the calculation of heat transfer between hammers and the workpiece with a heat transfer
coefficient of 2500 W/m2K. Levanov’s law [33] was applied for the friction between the rod
and hammer with a Levanov coefficient of 1.25 and a friction factor of 0.8.

3. Results
3.1. As-Received Condition

According to the XRD pattern (Figure 2a) and phase map (Figure 2b), face-centered
cubic (FCC) and body-centered cubic (BCC) phases were detected in the as-received condi-
tion. Thin δ-ferrite (BCC-phase) grains were located along the austenite grains (Figure 2b).
Austinite (FCC-phase) possessed equiaxed grains with an average size of ~10 µm. The
fraction of the Σ3-type boundaries was 61% of high-angle boundaries (HAB), which might
be referred to as an annealed condition. Kernel average misorientation (KAM) analysis of
the as-received material presented the low uniform KAM level of the condition (Figure 2c).
Meanwhile, a weak axial two-component (〈001〉 and 〈111〉) texture of austenite was de-
tected (Figure 2d). On the inverse pole figure (IPF) (Figure 2d), the intensity of the 〈001〉 and
〈111〉 components was 1.2–1.3 MRD (multiple of random distribution). The volume frac-
tion of the 〈001〉- and 〈111〉-oriented grains reached 4% and 6.5%, respectively (Figure 2e).
According to the TEM observations, single dislocations and annealing twins within the
austenitic grains were observed (Figure 2f).
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Figure 2. (a) XRD pattern, (b) phase map, (c) KAM map, (d) inverse pole figure, (e) crystal direction
map, and (f) TEM photograph of the as-received material. In (b,c,e), the high-angles boundaries
(misorientation more than 15◦) are marked in black. Twin boundaries are marked in green in (b).

3.2. Phase Composition Analysis

The distribution of the ferromagnetic BCC-phase along the rod diameter and the XRD
patterns of the rod center and edge after different swaging modes are presented in Figure 3.
In the as-received condition, the volume fraction of the BCC-phase was uniform along
the diameter at ~2% (Figure 3a). After a reduction of 20% and 40%, the total BCC phase
volume fraction was also uniform at 3% and 9%, respectively, which was associated with the
development of strain-induced martensitic transformation (SIMT). The subsequent swaging
was accompanied by the enhancement of SIMT and increasing the BCC-phase volume
fraction. Therefore, after a 60% reduction, the pronounced gradient of the ferromagnetic
BCC-phase volume fraction along the diameter was obtained (Figure 3a). In this instance,
the BCC-phase volume fraction varied from ~18% in the center to ~33% at the edge. With a
following increase in a reduction to 90%, the BCC-phase gradient became more pronounced
where the BCC-phase volume fraction varied from ~40% in the center to ~70% at the
edge. The XRD patterns were in good accordance with the results of the eddy-current
tests (Figure 3b). Therefore, with an increase in reduction, the intensity of the (110)α peak
increased, while the intensity of the (111)γ and (200)γ reflections decreased. Specifically,
the (220)γ and (311)γ peaks completely disappeared after a reduction of 90%. It is worth
noting that the intensity of the (110)α peak was more pronounced at the edge compared
to the center (Figure 3b) due to a significant increase in the BCC-phase volume fraction to
~70% herein (Figure 3a).

3.3. EBSD Analysis

Crystal direction maps, IPFs, and Kernel average misorientation maps of the program
material after applying cold rotary swaging modes are shown in Figure 4. Texture maps
were also established using EBSD data (Figure 5). The following trends of texture evolution
during cold rotary swaging could be distinguished using the obtained results: (i) a strong
two-component (〈111〉 and 〈001〉) axial texture of austenite was attained in the center that
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transferred into the one-component (〈111〉) texture to the edge (Figure 4); (ii) the volume
fraction of the 〈111〉-oriented austenitic grains in the center increased to a maximum of
~50% after a 60% reduction with a subsequent decrease, while the volume fraction of
〈001〉-oriented austenitic grains grew to a maximum of 32% after a 80% reduction herein
(Figure 5a,b); (iii) after a reduction of 60% and more, the volume fraction of 〈101〉-oriented
α’-martensitic grains increased along the radial direction from the center to the edge (Fig-
ure 5c). The pole figures are also presented in Supplementary Materials Figures S1 and S2
that confirm the formation of a strong axial texture. Thus, the strong texture gradient of
austenite and α’-martensite was attained after a reduction of 80–90%. It should be noted
that a deviation between the results of texture analysis at the same point did not exceed
10%. Furthermore, Kernel average misorientation maps presented increased local lattice
distortions in the center along grain boundaries after a reduction of 20%, while, at the edge,
KAM increased along the deformation bands, grain boundaries, and mechanical twins
(Figure 4). With a further reduction to 60% and more, high local lattice distortions were
found throughout all KAM maps.
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3.4. Microhardness Distribution

The effect of the cold rotary swaging mode on the microhardness distribution is shown
in Figure 6. The uniform distribution of microhardness at 190–200 HV was observed in the
as-received material (Figure 6a). However, after a reduction of 20%, the microhardness of
the center reached a level of ~280 HV, while the rod edge hardened to ~350 HV (Figure 6b).
Thereby, the gradient microhardness distribution from the center to the edge was attained.
On one hand, the following swaging with a reduction to 90% resulted in an increase in
the microhardness throughout the rod cross-section (Figure 6c–f). On the other hand,
the local maximum and minimum of microhardness were derived in the rod center and
half radial distance, respectively. Sufficient increasing microhardness to the rod edge was
also obtained.

3.5. TEM Observations

The results of the TEM observations are shown in Figure 7. After cold rotary swaging
with a reduction of 20–40%, two types of austenite areas in the center might be distin-
guished: (i) grains with the dislocation cell microstructure and a few single mechanical
twins inside (Figure 7a1); and (ii) grains with many mechanical twins of one twinning
system and slightly pronounced dislocation cells (Figure 7b1). Meanwhile, at the edge,
twinning occurred over several systems in most grains, and thereby a lamellar twin-matrix
microstructure was obtained (Figure 7c1). Swaging with a reduction of 60% caused the for-
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mation of the lamellar austenite-martensitic microstructure in the center (Figure 7b2), while
some areas still possessed the developed dislocation cell structure (Figure 7a2). However,
the fragmentation of the lamellar twin-matrix microstructure by dislocation and γ-α’ inter-
phase boundaries occurred at the edge (Figure 7c2). Apparently, with a reduction of up to
90%, the dislocation cell microstructure (Figure 7a3) and lamellar austenite-martensitic mi-
crostructure (Figure 7b3) were still observed in the center. However, at the edge, the globular
mainly martensitic microstructure was attained after a reduction of 80–90% (Figure 7c3).
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It should be noted that the twin density increased more dramatically after swaging
with a reduction of 20–40% at the edge in comparison to the center (Figure 8a). However,
twin density at the edge decreased sufficiently with the subsequent reduction. Obviously,
the maximum twin density in the center was reached just after a reduction of 60–80%
followed by a slight decrease. As was also derived, with an increase in reduction to
80–90%, the average size of the substructure elements in the center and edge decreased
sufficiently and tended to saturate at a value of ~200 nm, while the BCC-phase volume
fraction increased gradually (Figure 8b).
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4. Discussion

According to the received results (Section 3), cold rotary swaging resulted in the for-
mation of a distinct phase composition gradient (Figure 3), a pronounced texture gradient
of the FCC- (austenite) and BCC-phases (α’-martensite) (Figure 5), and a non-uniform
hardness distribution (Figure 6) and microstructure morphology along the rod diameter
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(Figure 7). The observed effects were caused by the features of the processing and deforma-
tion mechanisms developed in the program steel. Dominant deformation mechanisms, and
thereby plasticity, depend on the value of stacking fault energy (SFE) [29,34,35]. The SFE
value of the program steel was earlier estimated at 13–20 mJ/m2 [36], which suggested the
development of deformation-induced martensitic γ→ α’ transformation and mechanical
twinning. Therefore, finite element analysis (FEA) was required to discover the main
features of cold rotary swaging that might provide further insights into the effect of applied
processing on the microstructure and texture evolution.

4.1. Finite Element Analysis of Cold Rotary Swaging

The results of the FEA are shown in Figure 9. FEA simulated that high compressive
stresses were attained at the rod subsurface zone during processing (Figure 9a,b), while
moderate tensile stresses were observed in the rod center. Therefore, it is expected that
the main plastic strain was accumulated within the subsurface zone (Supplementary
Materials Figure S3). Hence, a further increase in reduction was associated with the
enhancement of the plastic strain gradient in the radial direction. It is worth noting that the
quantitative estimation of plastic deformation using the applied software was limited by
the experimental results from the database where true strain (e) did not exceed 2. Therefore,
the modeling of deformation with e >2 might be considered as only qualitative analysis. It
is worth noting that heating of the rod was also provided during swaging. According to
the FEA results, the rod center might be heated up to ~200 ◦C (Figure 9c,d). Apparently,
the temperature gradient from the edge to the center of the workpiece was attained due to
outer water cooling and inner heating.
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4.2. Phase Composition Gradient Evolution

During cold rotary swaging, the obvious gradient of phase composition was obtained
after a reduction of 60% (Figure 3a) that was associated with a gradual increase in the
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ferromagnetic BCC-phase volume fraction from the center to the edge. However, in the
as-received condition, the BCC-phase volume fraction was uniformly distributed along
the diameter at a value of ~2%, which was likely associated with the presence of δ-ferrite.
Subsequent cold rotary swaging activated SIMT might be developed via the γ→ α’ and/or
γ→ ε→ α’ pathways [29,37–39]. Obviously, SIMT occurred via both pathways. On one
hand, a few points with a confidence index (CI) ~0.1 corresponding to ε-martensite were
detected in the program steel after the first steps of swaging. Due to the negligible amount
of ε-martensite, any reflections were not detected in the XRD patterns (Figure 3b). On the
other hand, many areas of only α’-martensite in the microstructure with CI ≥ 0.1 were
attained. The obtained observations were congruent with the previous results [37,40].

The volume fraction of the strain-induced α’-martensite depended on the accumulated
plastic strain [41]. It is worth noting that more plastic strain was accumulated at the
rod edge in comparison to the rod core (Supplementary Materials Figure S3). Therefore,
more α’-martensite was detected at the surface layers, while a gradual decrease in the
α’-martensite volume fraction was observed in the center direction (Figure 3a). The nuclei
of strain-induced α’-martensite were predominantly found on twins or in deformation
bunds (Figure 10a), which was congruent with the results presented in [31,42]. Hence, due
to higher twin density after a reduction of 20–40% (Figure 8a) and a higher current stress
under blowing by hammer (Figure 9a,b), SIMT was more enhanced at the edge (Figure 3a),
which caused decreasing twin density (Figure 8a). Meanwhile, SIMT within the untwined
grains might also occur from the grain boundaries to the core (Figure 10a).
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Moreover, the temperature distribution can also affect SIMT and mechanical twinning.
Evidently, heating increased the SFE value and therefore inhibited SIMT and mechanical
twinning, providing dislocation slip [34,43,44]. Despite outer water cooling, excessive
heating of the rod center during processing was predicted by the FEA (Section 4.1). Hence,
the heating restricted SIMT herein, while, at the edge, SIMT might be provided more
pronouncedly. Thus, with an increase in the reduction of up to 90%, the enhancement of
the temperature gradient and the gradient of plastic strain accumulation promoted the
α’-martensite gradient (Figure 3a).

4.3. Non-Uniform Hardness Distribution

Throughout the rod cross-sections, an obvious non-uniform microhardness distribu-
tion after various swaging modes was attained (Figure 6). Increasing microhardness to
the edge was found, which can be associated with more plastic strain accumulation and
α’-martensite volume fraction. However, the content of α’-martensite did not increase the
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hardness value dramatically due to the similar hardness level of strain-induced martensite
and parent matrix austenite [45]. Meanwhile, a local maximum in the center and minimum
at the half radius was observed in the plots of microhardness distribution, also received
after a reduction of 40–90%. The current deviations could be ascribed to sufficient residual
stresses after applied processing. As previously shown [46], in the rod center, compressive
residual stresses were derived, while the tensile residual stresses were attained at the edge.
Interestingly, the compressive and tensile residual stresses were offset by each other at the
half radius, which defined the minimum microhardness herein (Figure 6).

4.4. Texture Gradient Evolution

Cold rotary swaging provoked the formation of the strong axial texture of austenite
with 〈111〉 and 〈001〉 components in the center after a reduction of ~60–80%, while, at the
edge, only weak one component (〈111〉) texture of austenite was derived (Figure 5a,b). As
predicted by the FEA (Section 4.1), different stress conditions were obtained in the center
and edge during processing. Therefore, uniaxial moderate tensile and high compressive
stresses were attained in the center and edge, respectively (Figure 9a). Evidently, 〈111〉-
oriented austenitic grains possessed many twins inside (Figure 10b), whereas 〈001〉-oriented
austenitic grains were twin-free or negligible twinned. As shown in [47], the deformation
of single 〈111〉-oriented austenitic crystals promoted the twinning of austenitic stainless
steel 316L, whereas austenitic crystals of the 〈001〉-orientation twinned only after a strain of
10%. According to [48–50], the 〈111〉 texture component of austenite could be developed by
mechanical twinning under uniaxial tension, whereas the 〈001〉 component was associated
with the enhancement in dislocation slip. Interestingly, a twin orientation relationship was
found between the 〈001〉- and 〈111〉-grains of austenite [40]. Hence, upon tensile stress, the
simultaneous development of mechanical twinning and dislocation slip within different
grains induced the formation of the strong axial two-component (〈111〉 and 〈001〉) texture
of austenite in the rod center.

Meanwhile, at the edge, a weaker axial 〈111〉 texture was certainly associated with
the overall mechanical twinning of austenitic grains, and thereby the absence of twin-
free grains. On the other hand, dislocation slip was developed herein, which might
obviously reduce the effect of twinning on the enhancement of the 〈111〉 texture component
of austenite. The latter was verified by KAM maps (Figure 4), where the local lattice
distortions were more pronounced at the rod edge. Evidently, a decrease in the 〈111〉
texture of austenite with increasing reduction can also be ascribed to the development
of SIMT. Therefore, after an 80–90% reduction, the new strong axial 〈101〉 texture of α’-
martensite was enhanced throughout the rod cross-section (Figure 5c). According to the
present results (Figure 11) and previous papers [2,5,37,51], austenite and α’-martensite
demonstrated an orientation relationship as per Kurdjumov–Sachs (<111>α//<110>γ
and {110} α//{111}γ), although there were many areas with a high confidence index
(more than 0.1) of α’-martensite. Interestingly, since a few points of ε-martensite with a
CI more than 0.1 were detected during EBSD analysis, a strong orientation relationship
was not found between the HCP phase and FCC phase. Thus, it is expected that SIMT
within the 〈111〉-oriented austenitic grains promoted the nucleation and growth of 〈101〉-
oriented α’-martensitic grains (Figure 10b). Thereby, a gradual decrease in the 〈111〉 texture
component of austenite was accompanied by an increase in the 〈101〉 texture component of
α’-martensite (Figure 5b,c).

4.5. Microstructure Transformation

As shown in the present work (Section 3), the development of dislocation slip, mechan-
ical twinning, and SIMT occurred during cold rotary swaging. Due to the various plastic
strain accumulation (Supplementary Materials Figure S3) and stress conditions in the center
and edge (Figure 9a), the following stages of microstructure transformation could be di-
vided: (i) dislocation cell formation (Figure 7a1)/single system twinning (Figure 7b1) in the
center and the lamellar twin-matrix microstructure (Figure 7c1) at the edge after a 20–40%
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reduction; and (ii) enhancement of the dislocation cell microstructure (Figure 7a3)/lamellar
austenite-martensite microstructure by several system twining and SIMT (Figure 7b3) in
the center and the globular, mostly martensitic microstructure (Figure 7c3), at the edge after
an 80–90% reduction. Additionally, the transition condition from a lamellar to globular
microstructure might be distinguished after a 60% reduction (Figure 7c2). According to
Section 4.4, it is obvious that the development of a dislocation cell microstructure in the
center was associated with the formation of the 〈001〉 texture component of austenite,
whereas the lamellar twin-matrix microstructure of austenite promoted the enhancement
of the 〈111〉 texture component of austenite.
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Meanwhile, the microstructure refinement effect was also found during processing
(Figure 8b). As was revealed, the average size of the substructure elements decreased
with an increasing reduction. Due to the development of mechanical twinning by many
systems after a 20% reduction at the edge (Figure 8a), the microstructure refinement was
more pronounced herein, while mainly dislocation slip and poor twinning occurred in the
rod center. As was previously found [52], the dislocation slip was obtained at the plastic
deformation onset of the austenitic stainless steels with subsequent twinning develop-
ment because of the lower critical shear stress compared with mechanical twinning [53].
However, a subsequent reduction resulted in the similar average size of the substructure
elements throughout the cross-section that was caused by dislocation slip, twinning, and
SIMT. Therefore, the progress of microstructure refinement was associated with the for-
mation of interphase and twin boundaries as well as dislocation cells. For instance, in the
〈111〉-oriented single crystals, the saturation of mechanical twinning was followed by the
formation of a dislocation cell microstructure [47] that, in the present work, occurred at
the edge and resulted in the microstructure fragmentation and decreasing twin density.
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Moreover, SIMT caused interphase boundary formation, and therefore microstructure re-
finement. With an increase in the reduction to 80–90%, the average size of the substructure
elements in the center and edge tended to saturate at a value of ~200 nm (Figure 8b), which
was certainly the limit of microstructure refinement by the applied swaging modes.

A further reduction in diameter might likely result in the formation of new surface and
inner defects (cracks and pores) of the rod. Obviously, the development of SIMT can also
occur throughout the rod cross-section. However, shear banding was expected only at the
edge due to the high compressive stresses herein. Unless the rod is destroyed during the
following processing, a trend to obtaining a more uniform structure along the rod diameter
could be observed with increasing swaging reduction.

5. Conclusions

The evolution of the microstructure and texture gradient of a 321-type MASS dur-
ing cold rotary swaging was explored in the current study. The following conclusions
were obtained:

1. During cold rotary swaging, moderate tensile stresses were attained in the center,
while high compressive stresses were predicted by FEA at the edge. Thereby, increased
plastic strain accumulation at the rod edge in comparison to the rod core was expected.
Due to water cooling of the rod surface and heating of the rod center during processing,
a temperature gradient was also obtained.

2. Higher strain accumulation at the edge and the development of the temperature
gradient during processing caused the development of the pronounced α’-martensite
gradient after a 90% reduction, where the BCC-phase volume fraction varied from
~40% in the center to ~70% at the edge.

3. A strong axial two-component (〈111〉 and 〈001〉) texture of austenite was obtained in
the center that turned to the weak axial one component (〈111〉) texture of austenite
to the edge. Therefore, the volume fraction of the 〈111〉-oriented austenitic grains
increased to a maximum of 40–50% after a 60–80% reduction with a subsequent
decrease, while the volume fraction of the 〈001〉-oriented austenitic grains reached
a maximum of ~32% after an 80% reduction. With an increase in reduction to 60%,
the volume fraction of the 〈101〉-oriented grains of α’-martensite increased along the
radial direction. Thus, the pronounced texture gradient of austenite and α’-martensite
was formed after a reduction of 80–90%.

4. A non-uniform microstructure was developed during cold rotary swaging with
the following stages: (i) dislocation cell formation/twinning in the single system
in the center and the lamellar twin-matrix microstructure of austenite at the edge
after a 20–40% reduction; and (ii) enhancement of the dislocation cell microstruc-
ture/lamellar austenite-martensite microstructure by several system twining and
SIMT in the center and globular, mostly α’-martensitic microstructure, at the edge
after an 80–90% reduction. With an increase in reduction to 90%, the average size
of the substructure elements in the center and edge tended to saturate at a value
of ~200 nm.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16041706/s1, Figure S1: Pole figures of austenite after cold
rotary swaging with a reduction of 20%, 60%, and 90%; Figure S2: Pole figures of α’-martensite after
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(d) fourth (80%) step of swaging.
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