Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses
Abstract
:1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Short-Range Order
3.2. Mechanical Properties
3.2.1. H-Doped MGs Prepared via Method 1
3.2.2. H-Doped MGs Prepared by Method 2
3.3. Relaxation Behaviors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Louthan, M., Jr.; Caskey, G., Jr.; Donovan, J.; Rawl, D., Jr. Hydrogen embrittlement of metals. Mater. Sci. Eng. 1972, 10, 357–368. [Google Scholar] [CrossRef]
- Oriani, R. Hydrogen embrittlement of steels. Annu. Rev. Mater. Sci. 1978, 8, 327–357. [Google Scholar] [CrossRef]
- Schroeder, H.-W.; Köster, U. Hydrogen embrittlement of metallic glasses. J. Non-Cryst. Solids 1983, 56, 213–218. [Google Scholar] [CrossRef]
- Peral, L.B.; Fernández-Pariente, I.; Colombo, C.; Rodríguez, C.; Belzunce, J. The Positive Role of Nanometric Molybdenum–Vanadium Carbides in Mitigating Hydrogen Embrittlement in Structural Steels. Materials 2021, 14, 7269. [Google Scholar] [CrossRef]
- Wang, W.H. Roles of minor additions in formation and properties of bulk metallic glasses. Prog. Mater. Sci. 2007, 52, 540–596. [Google Scholar] [CrossRef]
- Sha, Z.; She, C.; Xu, G.; Pei, Q.; Liu, Z.; Wang, T.; Gao, H. Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties. Mater. Today 2017, 20, 569–576. [Google Scholar] [CrossRef]
- Sha, Z.; Lin, W.; Poh, L.H.; Xing, G.; Liu, Z.; Wang, T.; Gao, H. Fatigue of Metallic Glasses. Appl. Mech. Rev. 2020, 72, 050801. [Google Scholar] [CrossRef]
- Lu, S.; Li, X.; Liang, X.; He, J.; Shao, W.; Li, K.; Chen, J. Effect of Ho Addition on the Glass-Forming Ability and Crystallization Behaviors of Zr54Cu29Al10Ni7 Bulk Metallic Glass. Materials 2022, 15, 2516. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-J.; He, M.; Pan, S.-P.; Gu, L.; Li, H.-W.; Wang, H.; Ouyang, L.-Z.; Liu, J.-W.; Ge, T.-P.; Wang, D.-P.; et al. Towards easily tunable hydrogen storage via a hydrogen-induced glass-to-glass transition in Mg-based metallic glasses. Acta Mater. 2016, 120, 68–74. [Google Scholar] [CrossRef]
- Nagumo, M.; Takahashi, T. Hydrogen embrittlement of some Fe-base amorphous alloys. Mater. Sci. Eng. 1976, 23, 257–259. [Google Scholar] [CrossRef]
- Ashok, S.; Stoloff, N.; Glicksman, M.; Slavin, T. Liquid metal and hydrogen embrittlement of amorphous alloys. Scr. Met. 1981, 15, 331–337. [Google Scholar] [CrossRef]
- Eliaz, N.; Eliezer, D. Hydrogen effects on an amorphous Fe-Si-B alloy. Metall. Mater. Trans. A 2000, 31, 2517–2526. [Google Scholar] [CrossRef] [Green Version]
- Namboodhiri, T.; Ramesh, T.; Singh, G.; Sehgal, S. Hydrogen embrittlement of three metallic glasses. Mater. Sci. Eng. 1983, 61, 23–29. [Google Scholar] [CrossRef]
- Luo, L.; Wang, B.; Dong, F.; Su, Y.; Guo, E.; Xu, Y.; Wang, M.; Wang, L.; Yu, J.; Ritchie, R.; et al. Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying. Acta Mater. 2019, 171, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.-G.; Oh, J.-H.; Kim, Y.-J.; Jang, J.-I. Effect of hydrogen on subsurface deformation during indentation of a bulk metallic glass. Intermetallics 2010, 18, 1872–1875. [Google Scholar] [CrossRef]
- Suh, D.; Asoka Kumar, P.; Dauskardt, R.H. The effects of hydrogen on viscoelastic relaxation in Zr–Ti–Ni–Cu–Be bulk metallic glasses: Implications for hydrogen embrittlement. Acta Mater. 2002, 50, 537–551. [Google Scholar] [CrossRef]
- Paglieri, S.N.; Pal, N.K.; Dolan, M.D.; Kim, S.M.; Chien, W.-M.; Lamb, J.; Chandra, D.; Hubbard, K.M.; Moore, D.P. Hydrogen permeability, thermal stability and hydrogen embrittlement of Ni–Nb–Zr and Ni–Nb–Ta–Zr amorphous alloy membranes. J. Membr. Sci. 2011, 378, 42–50. [Google Scholar] [CrossRef]
- Yamaura, S.-I.; Hasegawa, M.; Kimura, H.; Inoue, A. Effects of Hydrogen on the Mechanical Properties of Ti50Ni25Cu25 Metallic Glass. Mater. Trans. 2002, 43, 2543–2547. [Google Scholar] [CrossRef] [Green Version]
- Suh, D.; Dauskardt, R.H. The effects of hydrogen on deformation and fracture of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Mater. Sci. Eng. A 2001, 319–321, 480–483. [Google Scholar] [CrossRef]
- Dong, F.; Lu, S.; Zhang, Y.; Luo, L.; Su, Y.; Wang, B.; Huang, H.; Xiang, Q.; Yuan, X.; Zuo, X. Effect of hydrogen addition on the mechanical properties of a bulk metallic glass. J. Alloy. Compd. 2017, 695, 3183–3190. [Google Scholar] [CrossRef]
- Dong, F.; Su, Y.; Luo, L.; Wang, L.; Wang, S.; Guo, J.; Fu, H. Enhanced plasticity in Zr-based bulk metallic glasses by hydrogen. Int. J. Hydrogen Energy 2012, 37, 14697–14701. [Google Scholar] [CrossRef]
- Shan, G.; Li, J.; Yang, Y.; Qiao, L.; Chu, W. Hydrogen-enhanced plastic deformation during indentation for bulk metallic glass of Zr65Al7. 5Ni10Cu17. 5. Mater. Lett. 2007, 61, 1625–1628. [Google Scholar] [CrossRef]
- Tian, L.; Yang, Y.-Q.; Meyer, T.; Tönnies, D.; Roddatis, V.; Voigt, H.; Zhao, X.-A.; Wang, Z.-J.; Xie, D.-G.; Seibt, M.; et al. Environmental transmission electron microscopy study of hydrogen charging effect on a Cu-Zr metallic glass. Mater. Res. Lett. 2020, 8, 439–445. [Google Scholar] [CrossRef]
- Widjaja, G.; Ershov, K.; Chupradit, S.; Suksatan, W.; Kavitha, M.; Jawad, M.A.; Fardeeva, I.; Ghafel, S.T.; Mustafa, Y.F.; Kadhim, M.M.; et al. The effects of hydrogen doping on energy state of shear bands in a Zr-Based metallic glass. Vacuum 2022, 198, 110882. [Google Scholar] [CrossRef]
- Su, Y.; Dong, F.; Luo, L.; Guo, J.; Han, B.; Li, Z.; Wang, B.; Fu, H. Bulk metallic glass formation: The positive effect of hydrogen. J. Non-Cryst. Solids 2012, 358, 2606–2611. [Google Scholar] [CrossRef]
- Wang, B.; Luo, L.; Dong, F.; Wang, L.; Wang, H.; Wang, F.; Luo, L.; Su, B.; Su, Y.; Guo, J.; et al. Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A molecular dynamics study. J. Mater. Sci. Technol. 2020, 45, 198–206. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Angelo, J.E.; Moody, N.R.; Baskes, M.I. Trapping of hydrogen to lattice defects in nickel. Model. Simul. Mater. Sci. Eng. 1995, 3, 289–307. [Google Scholar] [CrossRef]
- Chong-Yu, W.; Xie, H.-X.; Wang, C.-Y. Effect of H impurity on misfit dislocation in Ni-based single-crystal superalloy: Molecular dynamic simulations. Chin. Phys. B 2012, 21, 026104. [Google Scholar] [CrossRef]
- Park, K.-W.; Shibutani, Y.; Fleury, E. Hydrogen-induced structural change in Ni90Al10 metallic glass. J. Alloy. Compd. 2011, 509, S456–S459. [Google Scholar] [CrossRef]
- Sha, Z.D.; Branicio, P.S.; Pei, Q.X.; Liu, Z.S.; Lee, H.P.; Tay, T.E.; Wang, T.J. Strong and superplastic nanoglass. Nanoscale 2015, 7, 17404–17409. [Google Scholar] [CrossRef] [PubMed]
- Şopu, D.; Albe, K. Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses. Beilstein J. Nanotechnol. 2015, 6, 537–545. [Google Scholar]
- Park, K.-W.; Shibutani, Y. Effect of hydrogenation on the mechanical property of amorphous Ni90Al10 membranes. Int. J. Hydrogen Energy 2011, 36, 9324–9334. [Google Scholar] [CrossRef]
- Sha, Z.; Wong, W.H.; Pei, Q.; Branicio, P.S.; Liu, Z.; Wang, T.; Guo, T.; Gao, H. Atomistic origin of size effects in fatigue behavior of metallic glasses. J. Mech. Phys. Solids 2017, 104, 84–95. [Google Scholar] [CrossRef]
- Sha, Z.; Teng, Y.; Poh, L.H.; Pei, Q.; Xing, G.; Gao, H. Notch strengthening in nanoscale metallic glasses. Acta Mater. 2019, 169, 147–154. [Google Scholar] [CrossRef]
- Shimizu, F.; Ogata, S.; Li, J. Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Mater. Trans. 2007, 48, 2923–2927. [Google Scholar] [CrossRef] [Green Version]
- Li, J. AtomEye: An efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 2003, 11, 173–177. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Wang, B.; Shang, B.S.; Gao, X.Q.; Wang, W.H.; Bai, H.Y.; Pan, M.X.; Guan, P.F. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses. J. Phys. Chem. Lett. 2016, 7, 4945–4950. [Google Scholar] [CrossRef]
- Wang, W.H. Dynamic relaxations and relaxation-property relationships in metallic glasses. Prog. Mater. Sci. 2019, 106, 100561. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Z.Y.; Guan, P.F.; Yu, H.B.; Wang, W.H.; Ngai, K.L. Invariance of the relation between α relaxation and β relaxation in metallic glasses to variations of pressure and temperature. Phys. Rev. B 2020, 102, 094205. [Google Scholar] [CrossRef]
- Guo, K.F.; Zhang, J.C.; Sha, Z.D.; Pei, Q.X. Composition-dependent effects of oxygen on atomic structure and mechanical properties of metallic glasses. Phys. Chem. Chem. Phys. 2020, 23, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Duan, G.; Xu, D.; Zhang, Q.; Zhang, G.; Cagin, T.; Johnson, W.L.; Goddard III, W.A. Molecular dynamics study of the binary Cu 46 Zr 54 metallic glass motivated by experiments: Glass formation and atomic-level structure. Phys. Rev. B 2005, 71, 224208. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.Z.; Hui, X.; Chen, G.L.; Liu, Z.K. Al-centered icosahedral ordering in Cu46Zr46Al8 bulk metallic glass. Appl. Phys. Lett. 2009, 94, 091904. [Google Scholar] [CrossRef]
- Finney, J.; Bernal, J.D. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. Math. Phys. Eng. Sci. 1970, 319, 479–493. [Google Scholar]
- Ding, J.; Cheng, Y.-Q.; Ma, E. Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid. Acta Mater. 2014, 69, 343–354. [Google Scholar] [CrossRef]
- Feng, S.; Li, L.; Chan, K.; Zhao, L.; Wang, L.; Liu, R. Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study. J. Mater. Sci. Technol. 2020, 43, 119–125. [Google Scholar] [CrossRef]
- Murali, P.; Guo, T.; Zhang, Y.-W.; Narasimhan, R.; Li, Y.; Gao, H.J. Atomic Scale Fluctuations Govern Brittle Fracture and Cavitation Behavior in Metallic Glasses. Phys. Rev. Lett. 2011, 107, 215501. [Google Scholar] [CrossRef]
- Sha, Z.D.; Qu, S.X.; Liu, Z.S.; Wang, T.J.; Gao, H. Cyclic Deformation in Metallic Glasses. Nano Lett. 2015, 15, 7010–7015. [Google Scholar] [CrossRef]
- Sha, Z.-D.; Pei, Q.-X.; Sorkin, V.; Branicio, P.S.; Zhang, Y.-W.; Gao, H. On the notch sensitivity of CuZr metallic glasses. Appl. Phys. Lett. 2013, 103, 081903. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-B.; Wang, W.-H.; Samwer, K. The β relaxation in metallic glasses: An overview. Mater. Today 2013, 16, 183–191. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Gao, P.; Zhang, W. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials 2023, 16, 1731. https://doi.org/10.3390/ma16041731
Zhang J, Gao P, Zhang W. Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials. 2023; 16(4):1731. https://doi.org/10.3390/ma16041731
Chicago/Turabian StyleZhang, Jiacheng, Pengfei Gao, and Weixu Zhang. 2023. "Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses" Materials 16, no. 4: 1731. https://doi.org/10.3390/ma16041731
APA StyleZhang, J., Gao, P., & Zhang, W. (2023). Influence of the Hydrogen Doping Method on the Atomic Structure, Mechanical Properties and Relaxation Behaviors of Metallic Glasses. Materials, 16(4), 1731. https://doi.org/10.3390/ma16041731