The Effect of Acanthocardia tuberculata Shell Powder as Filler on the Performance of Self-Compacting Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pre-Treatment of Acanthocardia tuberculata
2.3. Self-Compacting Mortar Design
2.4. Tests Methods
2.4.1. Characterisation of Raw Materials and Hardened Mortars
- X-ray fluorescence spectrometry analysis (XRF)
- X-ray diffraction pattern (XRD)
- Determination of the particle density of filler
- Thermogravimetric analysis and differential thermal analysis (TGA-DTA)
- Scanning electron microscopy (SEM)
2.4.2. Fresh Properties of the Mixtures
2.4.3. Hardened Properties of the Mixtures
- Flexural and Compressive Strength
- Dry bulk density, water absorption capacity and accessible porosity of water
3. Results and Discussion
3.1. Effect of Thermal Treatment in the Acantocardia tuberculata
3.2. Characterisation of Raw Materials
3.3. Fresh Properties of the Mixtures
3.4. Hardened Properties
3.4.1. Characterisation of Hardened Mortar
3.4.2. Flexural and Compressive Strength
3.4.3. Dry Bulk Density, Water Absorption Capacity and Accessible Porosity of Water
4. Conclusions
- The main oxide found in Acanthocardia tuberculata shell powder was CaO. Aragonite and Vaterite were the main phases identified.
- An analysis by SEM was conducted in order to study the Acanthocardia tuberculata microstructure. A shell heated at 135 °C and an unheated shell were studied. As a result, biomineralised materials were observed in an unheated shell, which corresponded to minerals and organic macromolecules. When the shell was heated, these materials disappeared.
- The particle size distribution of Acanthocardia tuberculata shell powder was smaller than the limestone filler used as a reference. Both fillers were analysed by SEM, finding that Acanthocardia tuberculata shell powder particles were less smooth and more porous than limestone filler particles.
- Three types of mortar mixtures with 100% Acanthocardia tuberculata shell powder that met the parameters of self-compactability of SCM were tested. It was found that, when replacing limestone filler with Acanthocardia tuberculata shell powder, properties such as fluidity and consistence decreased. This is related to particle size distribution, and a more porous and less smooth surface of Acanthocardia tuberculata shell powder than limestone filler.
- The mineralogical phases of hardened mortars were studied using the XRD technique and TGA/DTA analysis. All mortars with Acanthocardia tuberculata shell powder presented the same mineralogical phases as reference mortars, except Aragonite, and increased in the Portlandite phase found in shell powder mortars. This was indicative that the presence of Acanthocardia tuberculata shell powder had no negative effect on cement setting, which would occur with significant changes in XRD.
- The mechanical strength was slightly reduced with the incorporation of Acanthocardia tuberculata shell powder. Compressive strength decreased to 29.43, 16.84 and 2.29% when replacing limestone filler by seashell filler to Vp/Vs 0.6, 0.7 and 0.8, respectively. There was a decline in flexural strength to Vp/Vs 0.6 (12.47%) and Vp/Vs 0.7 (8.42%). To Vp/Vs 0.8 was the same. Properties such a water absorption and accessible porosity of water slightly increased when Acanthocardia tuberculata shell powder was incorporated. These increases were 29.60, 20.16 and 3.35% to water absorption and 22.47, 13.54 and 2.94% to accessible porosity of water to Vp/Vs 0.6, 0.7 and 0.8, respectively. On the other hand, dry bulk density decreased to 10.71, 8.42 and 0.50%.
- A mixture with Vp/Vs of 0.8 and substituting 100% limestone filler with Acanthocardia tuberculata shell powder had similar mechanical properties to the reference mixture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cangiotti, J.; Scatto, M.; Araya-Hermosilla, E.; Micheletti, C.; Crivellari, D.; Balloni, A.; Pucci, A.; Benedetti, A. Valorization of Seashell Waste in Polypropylene Composites: An Accessible Solution to Overcome Marine Landfilling. Eur. Polym. J. 2022, 162, 110877. [Google Scholar] [CrossRef]
- Bamigboye, G.O.; Nworgu, A.T.; Odetoyan, A.O.; Kareem, M.; Enabulele, D.O.; Bassey, D.E. Sustainable Use of Seashells as Binder in Concrete Production: Prospect and Challenges. J. Build. Eng. 2021, 34, 101864. [Google Scholar] [CrossRef]
- Wijsman, J.W.M.; Troost, K.; Fang, J.; Roncarati, A. Roncarati Global Production of Marine Bivalves. In Goods and Services of Marine Bivalves; Springer: Berlin/Heidelberg, Germany, 2018; pp. 7–26. [Google Scholar]
- Martínez-garcía, C.; González-fonteboa, B.; Martínez-abella, F.; López, D.C. Virtual Special Issue Bio Based Building Materials Performance of Mussel Shell as Aggregate in Plain Concrete. Constr. Build. Mater. 2017, 139, 570–583. [Google Scholar] [CrossRef]
- Eziefula, U.G.; Ezeh, J.C.; Eziefula, B.I. Properties of Seashell Aggregate Concrete: A Review. Constr. Build. Mater. 2018, 192, 287–300. [Google Scholar] [CrossRef]
- Tirado, C.; Marina, P.; Urra, J.; Antit, M.; Salas, C. Reproduction and Population Structure of Acanthocardia Tuberculata (Linnaeus, 1758) (Bivalvia: Cardiidae) in Southern Spain: Implications for Stock Management. J. Shellfish. Res. 2017, 36, 61–68. [Google Scholar] [CrossRef]
- Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z.; Lee, S.C.; Goh, W.I.; Yuen, C.W. Recycling of Seashell Waste in Concrete: A Review. Constr. Build. Mater. 2018, 162, 751–764. [Google Scholar] [CrossRef]
- Suarez-Riera, D.; Merlo, A.; Lavagna, L.; Nisticò, R.; Pavese, M. Mechanical Properties of Mortar Containing Recycled Acanthocardia Tuberculata Seashells as Aggregate Partial Replacement. Bol. Soc. Esp. Ceram. Y Vidr. 2021, 60, 206–210. [Google Scholar] [CrossRef]
- Azmi, M.; Johari, M. Cockle Shell Ash Replacement for Cement and Filler in Concrete nor Hazurina Othman 1 *, Badorul Hisham Abu Bakar 2. Mashitah. Mat. 2013, 25, 201–211. [Google Scholar]
- Nguyen, D.H.; Boutouil, M.; Sebaibi, N.; Leleyter, L.; Baraud, F. Valorization of Seashell By-Products in Pervious Concrete Pavers. Constr. Build. Mater. 2013, 49, 151–160. [Google Scholar] [CrossRef]
- Adewuyi, A.P.; Adegoke, T. Exploratory Study of Periwinkle Shells As. ARPN J. Eng. Appl. Sci. 2008, 3, 151–160. [Google Scholar]
- Olivia, M.; Oktaviani, R. Ismeddiyanto Properties of Concrete Containing Ground Waste Cockle and Clam Seashells. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2017; Volume 171, pp. 658–663. [Google Scholar]
- Suescum-Morales, D.; Fernández-Rodríguez, J.M.; Jiménez, J.R. Use of Carbonated Water to Improve the Mechanical Properties and Reduce the Carbon Footprint of Cement-Based Materials with Recycled Aggregates. J. CO2 Util. 2022, 57, 101886. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Shi, C.J. Mechanism for Rapid Hardening of Cement Pastes under Coupled CO2-Water Curing Regime. Cem. Concr. Compos. 2019, 97, 78–88. [Google Scholar] [CrossRef]
- Sanjuán, M.Á.; Andrade, C.; Mora, P.; Zaragoza, A. Carbon Dioxide Uptake by Mortars and Concretes Made with Portuguese Cements. Appl. Sci. 2020, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Morioka, M.; Yoshioka, I.; Yokozeki, K. Development of a New Ecological Concrete with CO2 Emissions below Zero. Constr. Build. Mater. 2014, 67, 338–343. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Kalinowska-wichrowska, K.; Fernández, J.M.; Jiménez, J.R. Accelerated Carbonation of Fresh Cement-Based Products Containing Recycled Masonry Aggregates for CO2 Sequestration. J. CO2 Util. 2021, 46, 101461. [Google Scholar] [CrossRef]
- Sa, D.; Su, S.M.; Ba, A. Cleaner production of concrete by using industrial by-products as fine aggregate: A sustainable solution to excessive river sand mining. J. Build. Eng. 2021, 42, 102415. [Google Scholar] [CrossRef]
- Lozano-Lunar, A.; Dubchenko, I.; Bashynskyi, S.; Rodero, A.; Fernández, J.M.; Jiménez, J.R. Performance of Self-Compacting Mortars with Granite Sludge as Aggregate. Constr. Build. Mater. 2020, 251, 118998. [Google Scholar] [CrossRef]
- Esquinas, A.R.; Ramos, C.; Jiménez, J.R.; Fernández, J.M.; de Brito, J. Mechanical Behaviour of Self-Compacting Concrete Made with Recovery Filler from Hot-Mix Asphalt Plants. Constr. Build. Mater. 2017, 131, 114–128. [Google Scholar] [CrossRef]
- Tavakoli, D.; Hashempour, M. Use of Waste Materials in Concrete: A Review SCIENCE & TECHNOLOGY Use of Waste Materials in Concrete: A Review. Pertanika J. Sci. Technol. 2018, 26, 499–522. [Google Scholar]
- Ahmad, W.; Ahmad, A.; Ostrowski, K.A.; Aslam, F.; Joyklad, P. A Scientometric Review of Waste Material Utilization in Concrete for Sustainable Construction. Case Stud. Constr. Mater. 2021, 15, e00683. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Makul, N.; Siripattarapravat, C. Utilization of Ground Waste Seashells in Cement Mortars for Masonry and Plastering. J. Environ. Manag. 2012, 111, 133–141. [Google Scholar] [CrossRef]
- Agbede, O.I.; Manasseh, J. Suitability of Periwinkle Shell as Partial Replacement for River Gravel in Concrete. Leonardo Electron. J. Pract. Technol. 2009, 15, 59–66. [Google Scholar]
- EN 197-1:2011; Part 1: Composition, Specifications and Conformity Criteria for Commo on Cements. iTeh, Inc.: Newark, DE, USA, 2013.
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of the European Union, 2009. Available online: https://www.cerp.carloalberto.org/wp-content/uploads/2010/06/eu_regulation_987_2009.pdf(accessed on 30 October 2009).
- Boletín Oficial del Estado. Ministerio de Transportes Movilidad y Agenda Urbana Código Estructural; Boletín Oficial del Estado: Madrid, Spain, 2021; pp. 97664–99452.
- Nepomuceno, M.; Oliveira, L.; Lopes, S.M.R. Methodology for Mix Design of the Mortar Phase of Self-Compacting Concrete Using Different Mineral Additions in Binary Blends of Powders. Constr. Build. Mater. 2012, 26, 317–326. [Google Scholar] [CrossRef]
- EFNARC Specification and Guidelines for Self-Compacting Concrete. Rep. EFNARC 2002, 44, 32.
- EN-1015-11:2019; Methods of Test for Mortar for Mansory. Part 11: Determination of Flexural and Compressive Strenght of Hardened Mortar. iTeh, Inc.: Newark, DE, USA, 2020.
- UNE-83980:2014; Concrete Durability. Test Methods. Determination of the Water Absorption, Density and Accesible Porosity for Water in Concrete. UNE: Málaga, Spain, 2014.
- Zolotoyabko, E.; Quintana, J.P. Non-Destructive Microstructural Analysis with Depth Resolution. Nucl. Instrum. Methods Phys. Res. B 2003, 200, 382–389. [Google Scholar] [CrossRef]
- Pokroy, B.; Fitch, A.N.; Zolotoyabko, E. Structure of Biogenic Aragonite (CaCO3). Cryst. Growth Des. 2007, 7, 1580–1583. [Google Scholar] [CrossRef]
- Zolotoyabko, E. Anisotropic Lattice Distortions in Biogenic Minerals Originated from Strong Atomic Interactions at Organic/Inorganic Interfaces. Adv. Mater. Interfaces 2017, 4, 1600189. [Google Scholar] [CrossRef]
- Jia, Z.; Deng, Z.; Li, L. Biomineralized Materials as Model Systems for Structural Composites: 3D Architecture. Adv. Mater. 2022, 34, 202106259. [Google Scholar] [CrossRef]
- Kocot, K.M.; Aguilera, F.; McDougall, C.; Jackson, D.J.; Degnan, B.M. Sea Shell Diversity and Rapidly Evolving Secretomes: Insights into the Evolution of Biomineralization. Front. Zool. 2016, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M.A.; Chen, P.Y.; Lin, A.Y.M.; Seki, Y. Biological Materials: Structure and Mechanical Properties. Prog. Mater. Sci. 2008, 53, 1–206. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Jia, Z.; Li, L. Biomineralized Materials as Model Systems for Structural Composites: Intracrystalline Structural Features and Their Strengthening and Toughening Mechanisms. Adv. Sci. 2022, 9, 202103524. [Google Scholar] [CrossRef] [PubMed]
- Iwase, K.; Mori, K. Crystal Structure, Microhardness, and Toughness of Biomineral CaCO3. Cryst. Growth Des. 2020, 20, 2091–2098. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Romero-Esquinas, Á.; Fernández-Ledesma, E.; Fernández, J.M.; Jiménez, J.R. Feasible Use of Colliery Spoils as Subbase Layer for Low-Traffic Roads. Constr. Build. Mater. 2019, 229, 116910. [Google Scholar] [CrossRef]
- Yang, E.I.; Yi, S.T.; Leem, Y.M. Effect of Oyster Shell Substituted for Fine Aggregate on Concrete Characteristics: Part I. Fundamental Properties. Cem. Concr. Res. 2005, 35, 2175–2182. [Google Scholar] [CrossRef]
- Yoon, H.; Park, S.; Lee, K.; Park, J. Oyster Shell as Substitute for Aggregate in Mortar. Waste Manag. Res. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Chen, E.; Fan, J.; Xiong, G. Properties of Cement-Based Bricks with Oyster-Shells Ash. J. Clean. Prod. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Djobo, Y.J.N.; Elimbi, A.; Dika Manga, J.; Djon Li Ndjock, I.B. Partial Replacement of Volcanic Ash by Bauxite and Calcined Oyster Shell in the Synthesis of Volcanic Ash-Based Geopolymers. Constr. Build. Mater. 2016, 113, 673–681. [Google Scholar] [CrossRef]
- Yao, Z.; Xia, M.; Li, H.; Chen, T.; Ye, Y.; Zheng, H. Bivalve Shell: Not an Abundant Useless Waste but a Functional and Versatile Biomaterial. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2502–2530. [Google Scholar] [CrossRef]
- Felipe-Sesé, M.; Eliche-Quesada, D.; Corpas-Iglesias, F.A. The Use of Solid Residues Derived from Different Industrial Activities to Obtain Calcium Silicates for Use as Insulating Construction Materials. Ceram. Int. 2011, 37, 3019–3028. [Google Scholar] [CrossRef]
- Olivia, M.; Mifshella, A.A.; Darmayanti, L. Mechanical Properties of Seashell Concrete. In Proceedings of the Procedia Engineering; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 125, pp. 760–764. [Google Scholar]
- JCPDS. Joint Committee on Power Diffraction Standard-International Centre for Diffraction. 2003. Available online: https://pubs.acs.org/doi/10.1021/ac60293a779 (accessed on 17 October 2022).
- Roncero, J.; Valls, S.; Gettu, R. Study of the Influence of Superplasticizers on the Hydration of Cement Paste Using Nuclear Magnetic Resonance and X-Ray Diffraction Techniques. Cem. Concr. Res. 2002, 32, 103–108. [Google Scholar] [CrossRef]
- Abed, M.; Nemes, R.; Lublóy, É. Performance of Self-Compacting High-Performance Concrete Produced with Waste Materials after Exposure to Elevated Temperature. J. Mater. Civ. Eng. 2020, 32, 04021305. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Silva, R.V.; Bravo, M.; Jiménez, J.R.; Fernández-Rodríguez, J.M.; de Brito, J. Effect of Incorporating Municipal Solid Waste Incinerated Bottom Ash in Alkali-Activated Fly Ash Concrete Subjected to Accelerated CO2 Curing. J. Clean. Prod. 2022, 370, 133533. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Bravo, M.; Silva, R.V.; Jiménez, J.R.; Fernandez-Rodriguez, J.M.; de Brito, J. Effect of Reactive Magnesium Oxide in Alkali-Activated Fly Ash Mortars Exposed to Accelerated CO2 Curing. Constr. Build. Mater. 2022, 342, 127999. [Google Scholar] [CrossRef]
- Kalinowska-Wichrowska, K.; Pawluczuk, E.; Bołtryk, M.; Jimenez, J.R.; Fernandez-Rodriguez, J.M.; Morales, D.S. The Performance of Concrete Made with Secondary Products—Recycled Coarse Aggregates, Recycled Cement Mortar, and Fly Ash–Slag Mix. Materials 2022, 15, 1438. [Google Scholar] [CrossRef]
- Hasnaoui, A.; Bourguiba, A.; el Mendili, Y.; Sebaibi, N.; Boutouil, M. A Preliminary Investigation of a Novel Mortar Based on Alkali-Activated Seashell Waste Powder. Powder Technol. 2021, 389, 471–481. [Google Scholar] [CrossRef]
- Chaudhari, R.R.; Bhongale, C.J. Simultaneous TG-FTIR Analyses on Molluscan Shells: Characterization and Thermal Stability of Organic-Inorganic Components. Chem. Geol. 2022, 611, 121132. [Google Scholar] [CrossRef]
- Fombuena, V.; Bernardi, L.; Fenollar, O.; Boronat, T.; Balart, R. Characterization of Green Composites from Biobased Epoxy Matrices and Bio-Fillers Derived from Seashell Wastes. Mater. Des. 2014, 57, 168–174. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the Recycling of Waste Seashells with Portland Cement towards Sustainable Cementitious Materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
- Rojo-López, G.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. Rheology, Durability, and Mechanical Performance of Sustainable Self-Compacting Concrete with Metakaolin and Limestone Filler. Case Stud. Constr. Mater. 2022, 17, e01143. [Google Scholar] [CrossRef]
- Lozano-Lunar, A.; da Silva, P.R.; de Brito, J.; Álvarez, J.I.; Fernández, J.M.; Jiménez, J.R. Performance and Durability Properties of Self-Compacting Mortars with Electric Arc Furnace Dust as Filler. J. Clean. Prod. 2019, 219, 818–832. [Google Scholar] [CrossRef]
- Benabed, B.; Kadri, E.H.; Azzouz, L.; Kenai, S. Properties of Self-Compacting Mortar Made with Various Types of Sand. Cem. Concr. Compos. 2012, 34, 1167–1173. [Google Scholar] [CrossRef]
- Bosiljkov, V.B. SCC Mixes with Poorly Graded Aggregate and High Volume of Limestone Filler. Cem. Concr. Res. 2003, 33, 1279–1286. [Google Scholar] [CrossRef]
- Safi, B.; Saidi, M.; Daoui, A.; Bellal, A.; Mechekak, A.; Toumi, K. The Use of Seashells as a Fine Aggregate (by Sand Substitution) in Self-Compacting Mortar (SCM). Constr. Build. Mater. 2015, 78, 430–438. [Google Scholar] [CrossRef]
- Suescum-Morales, D.; Cantador-Fernández, D.; Ramón Jiménez, J.; María Fernández, J. Potential CO2 Capture in One-Coat Limestone Mortar Modified with Mg3Al–CO3 Calcined Hydrotalcites Using Ultrafast Testing Technique. Chem. Eng. J. 2021, 415, 129077. [Google Scholar] [CrossRef]
- Ye, G.; Liu, X.; de Schutter, G.; Poppe, A.M.; Taerwe, L. Influence of Limestone Powder Used as Filler in SCC on Hydration and Microstructure of Cement Pastes. Cem. Concr. Compos. 2007, 29, 94–102. [Google Scholar] [CrossRef]
- Fernández, J.M. Introducción a Los Cementos; Universidad de Córdoba: Córdoba, Spain, 2004; ISBN 84-7801-731-3. [Google Scholar]
- Suescum-Morales, D.; Fernández, D.C.; Fernández, J.M.; Jiménez, J.R. The Combined Effect of CO2 and Calcined Hydrotalcite on One-Coat Limestone Mortar Properties. Constr. Build. Mater. 2021, 280, 122532. [Google Scholar] [CrossRef]
- Klemm, W.A.; Adams, L.D. An investigation of the Formation of Carboaluminates. In Carbonate Additions to Cement; Paul, K., Douglass, H., Eds.; ASTM: West Conshohocken, PA, USA, 1990; ISBN 0-8031-1454-0. [Google Scholar]
- Naqi, A.; Siddique, S.; Kim, H.K.; Jang, J.G. Examining the Potential of Calcined Oyster Shell Waste as Additive in High Volume Slag Cement. Constr. Build. Mater. 2020, 230, 116973. [Google Scholar] [CrossRef]
- Ballester, P.; Mármol, I.; Morales, J.; Sánchez, L. Use of Limestone Obtained from Waste of the Mussel Cannery Industry for the Production of Mortars. Cem. Concr. Res. 2007, 37, 559–564. [Google Scholar] [CrossRef]
- Hajilar, S.; Shafei, B. Assessment of Structural, Thermal, and Mechanical Properties of Portlandite through Molecular Dynamics Simulations. J. Solid State Chem. 2016, 244, 164–174. [Google Scholar] [CrossRef]
Group 1 | Group 2 | Group 3 | |||||
---|---|---|---|---|---|---|---|
Ref-1 | SF-1 | Ref-2 | SF-2 | Ref-3 | SF-3 | ||
Powders | CEM | 490.9 | 490.5 | 526.3 | 525.9 | 557.0 | 556.5 |
Limestone filler (LF) | 300.5 | 0 | 322.2 | 0 | 341.0 | 0 | |
Seashell filler (SF) | 0 | 295.7 | 0 | 317.0 | 0 | 335.5 | |
Fine aggregates | Fine sand (FS) (0–3) | 618.1 | 617.6 | 568.1 | 567.6 | 526.0 | 525.6 |
Coarse sand (CS) (0–6) | 622.8 | 622.3 | 572.4 | 572.0 | 530.0 | 529.6 | |
Water | 240.6 | 240.6 | 258.0 | 258.0 | 273.0 | 273.0 | |
Self-compactability parameters | Vp/Vs | 0.6 | 0.6 | 0.7 | 0.7 | 0.8 | 0.8 |
Vw/Vp | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | |
Sp/p % | 0.6 | 0.7 | 0.6 | 0.7 | 0.5 | 0.6 |
Oxides (%) | Cement (CEM) | Fine Sand (FS) | Coarse Sand (CS) | Limestone Filler (LF) | Seashell Filler (SF) |
---|---|---|---|---|---|
Na2O | 0.24 | − | − | 0.14 | 0.95 |
MgO | 1.33 | 0.88 | 37.98 | 0.90 | 0.10 |
Al2O3 | 3.73 | 0.20 | 0.06 | 2.50 | 0.15 |
SiO2 | 15.58 | 0.39 | 0.91 | 2.30 | 1.25 |
P2O5 | 0.09 | − | − | − | − |
SO3 | 4.79 | 0.07 | 0.11 | 0.09 | 0.16 |
Cl2O3 | 0.18 | − | 0.21 | − | 0.11 |
K2O | 1.21 | 0.03 | 0.05 | − | 0.03 |
CaO | 70.03 | 98.31 | 60.44 | 93.46 | 96.81 |
TiO2 | 0.23 | − | − | − | − |
MnO2 | 0.06 | − | − | − | − |
Fe2O3 | 2.44 | 0.10 | 0.23 | 0.61 | 0.11 |
ZnO | 0.02 | − | − | − | − |
SrO | 0.08 | 0.03 | − | − | 0.32 |
Group 1 | Group 2 | Group 3 | ||||
---|---|---|---|---|---|---|
Ref-1 | SF-1 | Ref-2 | SF-2 | Ref-3 | SF-3 | |
Gm | 4.52 | 4.41 | 9.56 | 7.12 | 7.12 | 6.70 |
Rm (s−1) | 1.25 | 0.91 | 2 | 1.54 | 1.67 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Caro, Á.; Merino-Lechuga, A.M.; Fernández-Ledesma, E.; Fernández-Rodríguez, J.M.; Jiménez, J.R.; Suescum-Morales, D. The Effect of Acanthocardia tuberculata Shell Powder as Filler on the Performance of Self-Compacting Mortar. Materials 2023, 16, 1734. https://doi.org/10.3390/ma16041734
González-Caro Á, Merino-Lechuga AM, Fernández-Ledesma E, Fernández-Rodríguez JM, Jiménez JR, Suescum-Morales D. The Effect of Acanthocardia tuberculata Shell Powder as Filler on the Performance of Self-Compacting Mortar. Materials. 2023; 16(4):1734. https://doi.org/10.3390/ma16041734
Chicago/Turabian StyleGonzález-Caro, Ágata, Antonio Manuel Merino-Lechuga, Enrique Fernández-Ledesma, José María Fernández-Rodríguez, José Ramón Jiménez, and David Suescum-Morales. 2023. "The Effect of Acanthocardia tuberculata Shell Powder as Filler on the Performance of Self-Compacting Mortar" Materials 16, no. 4: 1734. https://doi.org/10.3390/ma16041734
APA StyleGonzález-Caro, Á., Merino-Lechuga, A. M., Fernández-Ledesma, E., Fernández-Rodríguez, J. M., Jiménez, J. R., & Suescum-Morales, D. (2023). The Effect of Acanthocardia tuberculata Shell Powder as Filler on the Performance of Self-Compacting Mortar. Materials, 16(4), 1734. https://doi.org/10.3390/ma16041734