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Abstract: A high-performance GaAs nanowire photodetector was fabricated based on the modifi-
cation of Au nanoparticles (NPs). Au nanoparticles prepared by thermal evaporation were used to
modify the defects on the surface of GaAs nanowires. Plasmons and Schottky barriers were also
introduced on the surface of the GaAs nanowires, to enhance their light absorption and promote
the separation of carriers inside the GaAs nanowires. The research results show that under the
appropriate modification time, the dark current of GaAs nanowire photodetectors was reduced. In
addition, photocurrent photodetectors increased from 2.39 × 10−10 A to 1.26 × 10−9 A. The responsiv-
ity of GaAs nanowire photodetectors correspondingly increased from 0.569 A·W−1 to 3.047 A·W−1.
The reasons for the improvement of the photodetectors’ performance after modification were ana-
lyzed through the energy band theory model. This work proposes a new method to improve the
performance of GaAs nanowire photodetectors.

Keywords: GaAs nanowires; photodetectors; Au nanoparticles; plasmons; Schottky barriers

1. Introduction

Photodetectors employing advanced material systems and device designs have at-
tracted significant attention, from the original photovoltaic effect to current intelligent
optoelectronic sensors [1–7]. Under the requirement for miniaturization of optoelectronic
devices, GaAs nanowires stand out because of their higher carrier mobility and absorption
coefficients compared with traditional low-dimensional materials [8,9]. In addition to
these properties, they have a direct band gap (1.42 eV) and high optical sensitivity, which
makes them a potential material for the preparation of room temperature visible-infrared
photodetectors [10–12]. However, the high surface state density of GaAs nanowires usually
leads to a large dark current in photodetectors, which seriously affects the device respon-
sivity [13–15]. Recently, the relevant reports have proposed that the surface state in GaAs
nanowires can be improved by sulfur passivation, thereby reducing the dark current of
photodetectors [16,17]. However, the present researches remain major challenges specially
on how to effectively enhance the photocurrent of GaAs nanowire photodetectors [18].

Generally, Au, Ag, Cu and other metal group nanostructures manifest significant light
absorption and conversion properties owing to their intrinsic localized surface plasmon
resonance (LSPR) [19–24]. Thus, the utilization of the LSPR effect of metal nanostructures is
an effective strategy in improving the absorption of semiconductor materials at visible–near-
infrared wavelengths [25–27]. Previous studies have shown that the nanowires can be mod-
ified by Au colloidal solution deposition and Au nanoparticle chemical generation [28,29].
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However, both the preparation of Au colloidal solutions and the growth of Au nanoparticles
on nanowires usually have high requirements on the ratio of reactants and reaction condi-
tions. A simple and efficient design for modifying GaAs nanowires using Au nanoparticles
is urgently needed to improve the performance of nanowire photodetectors [30].

Herein, we successfully fabricate a GaAs nanowire photodetector with Au nanopar-
ticle modification, with only a brief regulation for the evaporation rate and time in the
thermal evaporation system. The key in the modification process of GaAs nanowires is
to properly adjust the diameter and number of Au nanoparticles by controlling the evap-
oration rate time, respectively, to effectively amplify the photocurrent. The reason for
promoting the photoelectric detection performance is the coupling of the electron gas in
the Au nanoparticles with the excitation light [31–35]. Furthermore, the metal particles on
the surface of the GaAs nanowires will introduce a local Schottky barrier, which generates
a space charge region which promotes the separation and collection of photogenerated car-
riers effectively [36–39]. This work opens up an avenue for constructing high-performance
photodetectors, showing considerable potential in miniaturized optoelectronic devices.

2. Materials and Methods
2.1. Growth of GaAs Nanowires

GaAs nanowires were grown using the Ga-assisted self-catalyzed method. The MBE
system model was DCA P600, and the substrate used was an n-type Si(111) substrate. First,
the Si substrate was sonicated with acetone, absolute ethanol and deionized water for
5 min each to remove surface impurities. Subsequently, the substrate was transferred to the
preparation chamber and degassed at 400 ◦C, then transferred to the growth chamber to
deposit Ga droplets at 620 ◦C for 26 s. The formal growth of GaAs nanowires started after
a growth pause of 80 s. During the growth process, the temperature was kept constant at
620 ◦C and the V/III beam current ratio was kept constant at 25.8 (the Ga beam was set to
6.2 × 10−8 Torr, the As beam current was set to 1.6 × 10−6 Torr and 1 Torr = 133.322 Pa).
After 2 h of growth, the Ga source was first turned off and the As source was kept on until
the substrate temperature was cooled to 300 ◦C. Finally, the growth of the GaAs nanowires
was completed when the substrate temperature cooled to room temperature.

2.2. Fabricate Nanowire Photodetectors

To fabricate GaAs nanowire photodetectors, the grown GaAs nanowire arrays were
transferred onto a P-type Si substrate containing 100 nm SiO2 by a mechanical transfer
method. Cr/Au (10 nm/50 nm) electrodes were prepared by electron beam lithography
(EBL), metal thermal evaporation and lift-off processes. With the aim of pursuing better
metal-semiconductor contact, GaAs nanowires were immersed in 10% hydrochloric acid
before the metal electrode was evaporated to the ends of the GaAs nanowires, which
could remove the natural oxide layer on the surface of the GaAs nanowires [40,41]. The
photoelectric properties of GaAs nanowire photodetectors were tested using the KEYSIGHT
B1500 semiconductor analyzer under vacuum and at room temperature.

3. Results and Discussion

SEM images of the MBE-grown GaAs nanowire array and a single nanowire are
illustrated in Figure 1a,b. It is clearly shown that the average length of a GaAs nanowire
is about 6 µm and the diameter is about 180 nm, respectively. Energy dispersive X-ray
spectroscopy (EDX) analysis was employed to assess the chemical composition of the
fabricated GaAs nanowire structure. As shown in Figure 1c,d, the EDX mappings reveal the
homogeneous spatial distribution of elements Ga and As within the GaAs nanowires. The
right-corner inset in Figure 1b presents the SEM image of the GaAs nanowire photodetector
structure, with a channel length of 2 µm.
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Figure 1. (a) SEM images of a GaAs nanowire array (a) and single GaAs nanowire (b). The illustration
in the upper right corner is SEM diagram of GaAs nanowire photodetectors. (c,d) Energy dispersive
X-ray spectroscopy (EDX) of the single GaAs nanowire.

To verify the enhancement of Au nanoparticles for the light absorption of GaAs
nanowires, the finite difference time domain (FDTD) on the absorb optical field intensity
distribution of different models are simulated in Figure 2. Considering the random distri-
bution of Au nanoparticles attached to the nanowires, we only studied the light-field effect
of a single particle, and simulated the random effect of Au particles on the entire nanowire
under the light field by the periodic boundary conditions. The diameter of nanowires was
200 nm, and the size of nanoparticles were 10 nm and 20 nm. A plane wave entered the
nanowires vertically as the incident light source and monitors were added at different
positions to analyze the field changes in Figure 2a,b. The excitation light source was set
as 532 nm to illuminate these different models. Figure 2c shows the absorbed optical field
intensity distribution of a single GaAs nanowire. After modifying Au nanoparticles with
a diameter of 10 nm on the surface of GaAs nanowires, it can be clearly observed that
absorbed optical field intensity increased at the junction of the Au nanoparticles and GaAs
nanowires in Figure 2d. In addition, we also used different diameter Au nanoparticles to
modify the GaAs nanowire surface in Figure 2e. When the diameter of the Au nanoparti-
cles was regulated to 20 nm, the absorption light field intensity at this time was reduced
compared to the counterparts with a diameter of 10 nm. These results are consistent
with previous findings by other researchers [42]. The greater the difference between the
wavelength of the excitation light and the diameter of the metal particle, the greater the
coupling range between the electron gas in the metal particle and the excitation light. In
addition, we wanted to further understand the specific multiples of the intensity of the
absorbed optical field at the junction before and after modification. Figure 2f shows the
absorbed optical field intensity distribution at 1.77 nm to the left of Au nanoparticles. The
strength of the optical field here is 4 times that of the same position on the original GaAs
nanowires. In summary, the simulation results can clearly demonstrate the influence of Au
nanoparticles on the performance of GaAs nanowires, which will lay a good foundation for
our subsequent experiments.
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Figure 2. Simulation results by FDTD. (a,b) The structure of GaAs nanowire photodetectors decorated
with Au nanoparticles. (c) Absorbed optical field distribution of pristine GaAs nanowires under
the excitation light of 532 nm. (d,e) Distribution of absorption light field after modified GaAs
nanowires by Au nanoparticles with the diameter of 10 nm, 20 nm. (f) Absorbed optical field intensity
distribution at 1.77 nm to the left of Au nanoparticle.

GaAs nanowire photodetectors were modified using Au nanoparticles. The prepa-
ration principle was that solid gold will melt under high temperature and pressure, Au
nanoparticles will evaporate to GaAs nanowire, and the surface of GaAs nanowires in GaAs
nanowire photodetectors channel will be attached by the Au nanoparticles. The size and
quantity of the Au nanoparticles were adjusted by regulating the evaporation rate and time.
As mentioned above, in order to improve the performance of GaAs nanowire photodetec-
tors, we were committed to preparing Au nanoparticles with a diameter of 10 nm to modify
the GaAs nanowires. We set the evaporation rate of the thermal evaporation system to a
minimum rate of 0.1 Å/s, which ensures the smallest diameter for Au nanoparticles in the
preparation process. In order to find the appropriate time to modify the GaAs nanowires
in the channel of photodetectors, we prepared three GaAs nanowire photodetectors and
modified the GaAs nanowires in the channel, with modification times of 10 s, 30 s and 50 s,
respectively. Figure 3a–c shows SEM images of modified GaAs nanowires at modification
times of 10 s, 30 s and 50 s, respectively. An SEM image of the Au nanoparticle structure is
shown in the upper right corner of Figure 3a. When the modification time was 10 s, Au
nanoparticles were randomly distributed on the surface of GaAs nanowires. Particularly,
the average diameter of Au nanoparticles was about 10 nm, which perfectly meets our
previous expectations. When the modification time was increased to 30 s and 50 s, Au
nanoparticles evenly covered the surface of GaAs nanowires. This caused us to not be able
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to distinguish the individual Au nanoparticles. To further observe the composition of Au
nanoparticles on the surface of GaAs nanowires, energy dispersive X-ray spectroscopy
(EDX) of Au nanoparticles of the samples was measured under a modification time of 10 s,
as shown in Figure 3d.
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(d) Energy dispersive X-ray spectroscopy (EDX) of Au nanoparticles under modification time of 10 s.

The I-V characteristic curves of the GaAs nanowire photodetectors with different
modification times and their corresponding unmodified devices under a 532 nm excitation
light are shown in Figure 4. By comparing Figure 4a,b, when the modification time was
10 s, the dark current of GaAs nanowire photodetectors decreased from 4.60 × 10−12 A
to 1.56 × 10−12 A under the optical power density of 104.86 mw·cm−2. The reduction of
dark current was attributed to the improved surface state of GaAs nanowires. Meanwhile,
the photocurrent of GaAs nanowire photodetectors increased from 2.39 × 10−10 A to
1.26 × 10−9 A. The improvement of the photocurrent can be attributed to the introduction
of localized plasmons and surface Schottky barriers, which further enhance the light
absorption of GaAs nanowires and promote the separation of photogenerated carriers inside
GaAs nanowires. Figure 4c,d displays the changes in the performance of the photodetectors
before and after 30 s modification time. It can be intuitively found that the modification
time of 30 s not only reduces the dark current, but also decreases the photocurrent of GaAs
nanowire photodetectors. The reason for the decrease in the photocurrent of the GaAs
nanowire photodetectors is that too many Au nanoparticles are evenly covered on the
surface of the GaAs nanowires, which will partially reflect the excitation light, resulting in
the decrease in the light absorption rate. Similarly, when the modification time was 50 s,
the dark current and photocurrent of the modified photodetectors were both reduced, as
shown in Figure 4e,f. Based on these results, we believe that modification time is critical in
the performance of GaAs nanowire photodetectors. Additionally, a suitable modification
time (10 s) is acquired to increase the photocurrent of GaAs nanowire photodetectors.
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photodetectors after the modification time is 10 s, 30 s and 50 s, respectively.

The responsivity is also an important physical parameter describing the photoelectric
conversion of GaAs nanowire photodetectors [37], which can be expressed as

R =
Ilight − Idark

A ∗ P
(1)

where A represents the photosensitive area and P is the optical power density
(mw·cm−2) [43–46]. When the modification time was 10 s, the responsivity of GaAs
nanowire photodetectors improved under different optical power densities, as shown in
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Figure 5a. Obviously, under the optical power density of 104.86 mW·cm−2, the responsivity
of GaAs nanowire photodetectors increased from 0.569 A·W−1 to 3.047 A·W−1. Figure 5b,c
show that the responsivity of GaAs nanowire photodetectors decreases under different
optical power densities. To further learn the intrinsic mechanism of the performance
improvement of GaAs nanowire photodetectors under the modification time of 10 s, we
compared the absorption spectral intensity of GaAs nanowires, Au nanoparticles and
GaAs nanowire/Au nanoparticles. Figure 5d shows the UV-IR absorption spectra of GaAs
nanowire photodetectors before and after modification. It can be observed that the absorp-
tion of the modified photodetectors under the excitation light in the 350–1000 nm band is
stronger than that of the original photodetectors. This is due to the mechanical oscillation
of the electron gas in the Au nanoparticles under the action of the excitation light. At that
moment, the electron gas in the Au nanoparticles is coupled with the excitation light to
enhance the light absorption of GaAs nanowires. This is also a good explanation for the
FDTD simulation results presented earlier. As mentioned above, we determined that Au
nanoparticles could enhance the light absorption rate of GaAs nanowires from two aspects
(simulation results and specific experimental results), which can improve the photocurrent
of GaAs nanowire photodetectors.
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We also compared the performances of various GaAs-based photodetectors in previous
reports (Table 1). Notably, our GaAs NW/Au NPs photodetector not only realized the
doubling of the dark current but also increases the photocurrent synchronization by one
order of magnitude, which endowed the photodetector with ultra-high responsiveness.
Additionally, its responsiveness was almost higher than that of other reported GaAs-based
nanowire photodetectors.
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Table 1. Performance comparison of GaAs-based NW photodetectors.

Material Idark (A) Ilight (A) R (A·W−1) Ref

Commercial GaAs / / 0.45 [16]
GaAsSb 3 × 10−7 5 × 10−7 2.37 [47]

GaAs/GaAsAl
quantum well NW 1.2 × 10−12 1.35 × 10−11 0.199 [48]

GaAs NW, surface
passivation 7.18 × 10−14 1.8 × 10−10 18.2 to 25 [16]

GaAs NW-Au NPs 6.9 × 10−13 2.92 × 10−12 6.56 [18]
GaAs NW 4.84 × 10−12 2.39 × 10−10 0.569 This work

GaAs NW-Au NPs 1.95 × 10−12 1.28 × 10−9 3.047 This work

The enhancement of the photocurrent can be attributed to the formation of the surface
Schottky barrier displayed in Figure 6a,b. Since the work function of Au (ϕAu = 5.1 eV) is
larger than that of GaAs nanowires (ϕGaAs = 4.78 eV) [49–51], the electrons at the interface
between the GaAs nanowires and Au nanoparticles are more likely to flow to the inside
of the Au nanoparticles. The outer negative and inner positive space charge regions are
formed at the surface of GaAs nanowires. When the excitation light source irradiates Au
nanoparticles, Au nanoparticles absorb light energy and produce hot carriers. The hot
holes flow to GaAs nanowires, which improves the photocurrent of the GaAs nanowire
photodetectors and enhances the photoresponse under the applied bias [47,48].
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4. Conclusions

A high-performance GaAs nanowire photodetector based on Au nanoparticle modifi-
cation was prepared in this paper. The main advantage of this paper was that Au nanopar-
ticles were attached to nanowires by thermal evaporation to improve the performance
of the photodetectors. The FDTD simulation results were consistent with the proposed
results, that the introduction of Au nanoparticles would increase the electromagnetic field
amplitude in the semiconductor. Additionally, it was found that the optimal time for Au
nanoparticles to modify photodetectors was 10 s. Under this condition, the photocurrent of
GaAs nanowire photodetectors increased from 2.39 × 10−10 A to 1.26 × 10−9 A under the
532 nm excitation light. Moreover, under the optical power density of 104.86 mW·cm−2, the
responsivity of GaAs nanowire photodetectors increased from 0.569 A·W−1 to 3.047 A·W−1.
This is because of the fact that the electron gas in the Au nanoparticles is excited to generate
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oscillations. The coupling of a part of the electron gas and the external electromagnetic
wave enhances the light absorption efficiency of GaAs nanowire photodetectors. The hot
holes flow to GaAs nanowires, which improves the photocurrent of GaAs nanowire pho-
todetectors and enhances the photoresponse under the applied bias. This study proposes a
simple and efficient method for improving the performance of photodetectors.
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