Effect of the Application of Sunflower Biochar and Leafy Trees Biochar on Soil Hydrological Properties of Fallow Soils and under Soybean Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar Production
2.2. Field Experiment
2.3. Laboratory Experiment
- Field capacity (FC), water content at field water volume (pF = 2.0).
- Permanent wilting point (PWP), a limit of water unavailability for plants’ moisture corresponding to pF = 4.2 was assumed.
- Available water capacity for plants (AWC):
- 4.
- Soil bulk density of dry soil, SBD (ρc) in cylinders of volume 100 cm3 [38].
- 5.
- Total porosity (TP) was calculated based on the value of the constant phase of soil ρs and soil bulk density ρc.
- 6.
- Drainage porosity (DP), as a difference between the general porosity TP and field capacity FC.
2.4. Statistical Analysis
- The impact of BC1 and BC2 was subjected to a separate analysis.
- A simultaneous analysis was made on the impact of BC1 and BC2 on fallow soils and the soils where soya was cultivated.
3. Results
3.1. Meteorological Conditions
3.2. Impact of Biochar Used on Selected Hydrological and Physical Soil Properties
3.3. Soya Yield
4. Discussion
4.1. Biochar Impact on Soil Physical Properties
4.2. Impact of Biochar on Soil Retention Capabilities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Edeh, G.; Ondřej, M.; Bussb, W. A meta-analysis on biochar’s effects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef] [PubMed]
- Tanure, M.M.; da Costa, L.M.; Huiz, H.A.; Fernandes, R.B.; Cecon, P.R.; Junior, J.D.; da Luz, J.M. Soil water retention, physiological characteristics, and growth of maize plants in response to biochar application to soil. Soil Tillage Res. 2019, 192, 164–173. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, P.B.; Arthur, E. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 361, 114055. [Google Scholar] [CrossRef]
- Sadowska, U.; Domagała-Świątkiewicz, I.; Żabiński, A. Biochar and Its Effects on Plant–Soil Macronutrient Cycling during a Three-Year Field Trial on Sandy Soil with Peppermint (Mentha piperita L.). Part I: Yield and Macro Element Content in Soil and Plant Biomass. Agronomy 2020, 10, 1950. [Google Scholar] [CrossRef]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A. Properties of biochar derived from wood and high nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- Quosai, P.; Anstey, A.; Mohanty, A.K.; Misra, M. Characterization of biocarbon generated by high- and low-temperature pyrolysis of soy hulls and cofee chaf: For polymer composite applications. R. Soc. Open Sci. 2018, 5, 171970. [Google Scholar] [CrossRef] [Green Version]
- Baigorri, R.; San Francisco, S.; Urrutia, O.; Garcia-Mina, J.M. Biochar-Ca and Biochar-Al/-Fe-Medited Phosphate Exchange Capacity are Main Drivers of the Di_erent Biochar E_ects on Plant in Acidic and Alkaline Soils. Agronomy 2020, 10, 968. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. J. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, Y.; Naidu, R.; Parikh, S.J.; Du, J.; Qi, F.; Willett, I.R. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Sci. Total Environ. 2020, 744, 140714. [Google Scholar] [CrossRef]
- Fuertes, A.B.; Arbestain, M.C.; Sevilla, M.; Maciá-Agulló, J.A.; Fiol, S.; López, R.; Smernik, R.J.; Aitkenhead, W.P.; Arce, F.; Macìas, F. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Soil Res. 2010, 48, 618–626. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Major, J.; Steiner, C.; Downie, A.; Lehmann, J.; Joseph, S. Biochar effects on nutrient leaching. In Biochar for Environmental Management Science and Technology; Earthscan Publishers Ltd.: London, UK, 2009; pp. 271–287. [Google Scholar]
- Głąb, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of Biochar Application on Soil Hydrological Properties and Physical Quality of Sandy Soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, L.X.; Zhang, H.P.; Li, X.Y.; Shen, Y.F.; Li, S.Q. Soil amendment with biochar increases maize yields in a semi-arid region by improving soil quality and root growth. Crop Pasture Sci. 2016, 67, 495–507. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar Particle Size, Shape, and Porosity Act Together to Influence Soil Water Properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef] [Green Version]
- FAO. Global Agriculture Toward 2050; FAO: Rome, Italy, 2010. [Google Scholar]
- Raghuvanshi, R.S.; Bisht, K. The Soybean: Botany, Production and Uses; CAB International: Oxfordshire, UK, 2010; pp. 404–412. [Google Scholar]
- Kania, J.; Zając, T.; Śliwa, J. Efektywność ekonomiczna uprawy soi i rzepaku w zachodniej części Polski (Economic Efficiency of Soybeans and Rapeseed in the Western Part of Poland). Rocz. Nauk. Stowarzyszenia Ekon. Rol. Agrobiz. 2016, 18, 133–138. (In Polisch) [Google Scholar]
- Augustyńska, I.; Bębenista, A. Ekonomiczne aspekty uprawy soi i łubinu słodkiego w Polsce (Economic Aspects of Growing Soybean and Sweet Lupine in Poland). Probl. Rol. Światowego 2019, 19, 256–268. (In Polisch) [Google Scholar] [CrossRef] [Green Version]
- European Commission. Report from the Commission to the Council and the European Parliament on the Development of Plant Proteins in the European Union; European Commission: Brussels, Belgium, 2018.
- Jerzak, M.A.; Śmiglak-Krajewska, M. Globalization of the Market for Vegetable Protein Feed and Its Impact on Sustainable Agricultural Development and Food Security in EU Countries Illustrated by the Example of Poland. Sustainability 2020, 12, 888. [Google Scholar] [CrossRef] [Green Version]
- Arata, L.; Fabrizi, E.; Sckokai, P. A worldwide analysis of trend in crop yields and yield variability: Evidence from FAO data. Econ. Model. 2020, 90, 190–208. [Google Scholar] [CrossRef]
- Hartman Glen, L.; Ellen DWest Theresa, K. Herman. Crops that feed the world. Soybean—Worldwide production, use and constraints caused by pathogens and pests. Food Secur. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Starkel, L.; Kundzewicz, Z.W. Consequences of climate change for spatial organization of Poland. Nauka 2008, 1, 85–101. [Google Scholar]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management; Earthscan: London, UK, 2009; ISBN 978-1-84407-658-1. [Google Scholar]
- Bis, Z.; Kobyłecki, R.; Ścislowska, M.; Zarzycki, R. Biochar—Potential tool to combat climate change and drought. Ecohydrol. Hydrobiol. 2018, 18, 441–453. [Google Scholar] [CrossRef]
- Ścisłowska, M.; Włodarczyk, R.; Kobyłecki, R.; Bis, Z. Biochar to improve the quality and productivity of soils. J. Ecol. Eng. 2015, 16, 31–35. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Latawiec, A.E.; Rodrigues, A.; Korys, K.A.; Medeiros, B. Methodical Aspects of Soil Ecosystem Services Valuation. Agric. Eng. 2022, 26, 39–49. [Google Scholar] [CrossRef]
- Latawiec, A.; Strassburg, B.N.B.; Junqueira, A.B.; Araujo, E.; de Moraes, L.F.D.; Pinto, H.A.N.; Castro, A.; Rangel, M.; Malaguti, G.A.; Rodrigues, A.F.; et al. Biochar amendment improves degraded pasturelands in Brazil: Environmental and cost-benefit analysis. Sci. Rep. 2019, 9, 11993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.; Lee, S.; Soto, A.M.; Chen, G. Regression model to predict the higher heating value of poultry waste from proximate analysis. Resources 2018, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Xue, J.; Yang, Y.; Lee, S.W. Thermal properties and combustion-related problems prediction of agricultural crop residues. Energies 2021, 14, 4619. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Reference Soil Resources Reports No 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Klute, A.; Dirksen, C. Water retention. Laboratory methods. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; Agronomy Monograph, 9; American Society of Agronomy: Madison, WI, USA, 1986; pp. 635–660. [Google Scholar]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Version 1.0; EPA Report 600/2-91/065; USDA, U.S. Salinity Laboratory, ARS: Riverside, CA, USA, 1991.
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods; Klute, A., Ed.; Agronomy Monograph, 9; American Society of Agronomy: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Abel, S.; Peters, A.; Trinks, S.; Schonsky, H.; Facklam, M.; Wessolek, G. Impact of Biochar and Hydrochar Addition on Water Retention and Water Repellency of Sandy Soil. Geoderma 2013, 202–203, 183–191. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In Situ Effects of Biochar on Aggregation, Water Retention and Porosity in Light-Textured Tropical Soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Duarte, S.D.J.; Glaser, B.; Cerri, C.E.P. Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils. Agronomy 2019, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa–Hersztek, M.; Tabor, S. Effects of co-composted maize, sewage sludge, and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 2018, 315, 27–35. [Google Scholar] [CrossRef]
- de Melo Carvalho, M.T.; de Holanda Nunes Maia, A.; Madari, B.E.; Bastiaans, L.; Van Oort, P.A.; Heinemann, A.B.; Soler da Silva, M.A.; Petter, F.A.; Marimon Jr, B.H.; Meinke, H. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system. Solid Earth 2014, 5, 939–952. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef] [PubMed]
- Walczak, R.; Ostrowski, J.; Witkowska-Walczak, B.; Sławiński, C. Hydrofizyczne charakterystyki mineralnych gleb ornych Polski. Acta Agrophysica 2002, 79, 1–64. (In Polisch) [Google Scholar]
- Wang, D.; Li, C.; Parikh, S.J.; Scow, K.M. Impact of biochar on water retention of two agricultural soils–A multi-scale analysis. Geoderma 2019, 340, 185–191. [Google Scholar] [CrossRef]
- Carcaillet, C. Are Holocene wood-charcoal fragments stratified in alpine and subalpine soils? Evidence from the Alps based on AMS 14C dates. Holocene 2001, 11, 231–242. [Google Scholar] [CrossRef]
- Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef] [Green Version]
Moisture (%) | VM * (%) | Ash (%) | C (%) | H (%) | N (%) | HHV * (MJ·kg−1) | LHV * (MJ·kg−1) | |
---|---|---|---|---|---|---|---|---|
Pellet (sunflower husk) | 10.5 | 66.8 | 1.8 | 44.1 | 5.6 | 0.6 | 17.3 | 16.0 |
Biochar BC1 (sunflower husk) | 13.2 | 13.8 | 4.4 | 74.0 | 3.6 | 0.8 | 27.1 | 25.8 |
Pellet (leafy trees) | 7.6 | 76.9 | 0.7 | 46.6 | 5.9 | 0.2 | 18.7 | 17.4 |
Biochar BC2 (leafy trees) | 12.2 | 8.6 | 1.8 | 83.4 | 3.2 | 0.3 | 28.8 | 27.5 |
Components | Bulk Density (g·cm−3) | Porosity (%) | Total Surface Area (m2·cm−1) |
---|---|---|---|
Biochar BC1 (sunflower husk) | 0.43 | 18.3 | 5.8 |
Biochar BC2 (leafy trees) | 0.46 | 7.9 | 2.9 |
Type of Biochar | Component | Type of Soil Cultivation | Biochar Dose (t·ha−1) | |||
---|---|---|---|---|---|---|
80 | 60 | 40 | 0 | |||
BC1 | SBD * (Mg·dm−3) | Fallow | 1.226 | 1.312 | 1.334 | 1.523 |
Soya | 1.165 | 1.304 | 1.321 | 1.443 | ||
TP (cm3·cm−3) | Fallow | 0.509 | 0.475 | 0.467 | 0.391 | |
Soya | 0.534 | 0.479 | 0.472 | 0.423 | ||
DP (cm3·cm−3) | Fallow | 0.250 | 0.205 | 0.206 | 0.146 | |
Soya | 0.264 | 0.214 | 0.208 | 0.179 | ||
FC (cm3·cm−3) | Fallow | 0.260 | 0.270 | 0.261 | 0.245 | |
Soya | 0.270 | 0.264 | 0.264 | 0.244 | ||
PWP (cm3·cm−3) | Fallow | 0.094 | 0.091 | 0.088 | 0.092 | |
Soya | 0.095 | 0.088 | 0.091 | 0.096 | ||
AWC (cm3·cm−3) | Fallow | 0.165 | 0.179 | 0.173 | 0.153 | |
Soya | 0.175 | 0.176 | 0.173 | 0.148 | ||
BC2 | SBD (Mg·dm−3) | Fallow | 1.252 | 1.294 | 1.365 | 1.515 |
Soya | 1.092 | 1.234 | 1.340 | 1.454 | ||
TP (cm3·cm−3) | Fallow | 0.509 | 0.492 | 0.464 | 0.394 | |
Soya | 0.572 | 0.516 | 0.474 | 0.419 | ||
DP (cm3·cm−3) | Fallow | 0.232 | 0.229 | 0.208 | 0.152 | |
Soya | 0.280 | 0.262 | 0.232 | 0.181 | ||
FC (cm3·cm−3) | Fallow | 0.277 | 0.262 | 0.256 | 0.242 | |
Soya | 0.292 | 0.254 | 0.242 | 0.237 | ||
PWP (cm3·cm−3) | Fallow | 0.092 | 0.088 | 0.092 | 0.093 | |
Soya | 0.091 | 0.087 | 0.090 | 0.096 | ||
AWC (cm3·cm−3) | Fallow | 0.185 | 0.174 | 0.164 | 0.149 | |
Soya | 0.200 | 0.167 | 0.152 | 0.141 |
Type of Biochar | Component | SBD | TP | DP | FC | PWP | AWC | |
---|---|---|---|---|---|---|---|---|
BC1 | Biochar dose (t·ha−1) | 80 | 1.196 a | 0.522 c | 0.257 c | 0.265 b | 0.095 b | 0.170 b |
60 | 1.308 b | 0.477 b | 0.210 b | 0.267 b | 0.090 a | 0.178 b | ||
40 | 1.327 b | 0.469 b | 0.207 b | 0.262 b | 0.089 a | 0.173 b | ||
0 | 1.483 c | 0.407 a | 0.162 a | 0.244 a | 0.094 b | 0.150 a | ||
Cultivation method | Fallow | 1.349 a | 0.461 a | 0.202 a | 0.259 a | 0.091 a | 0.168 a | |
Soya | 1.308 a | 0.477 a | 0.216 a | 0.260 a | 0.092 a | 0.168 a | ||
Year | 2019 | 1.288 a | 0.485 b | 0.220 b | 0.265 b | 0.091 a | 0.174 b | |
2020 | 1.369 b | 0.452 a | 0.198 a | 0.254 a | 0.093 a | 0.161 a | ||
p-value | BC1 dose | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | <0.001 | |
cultivation method | 0.057 | 0.057 | 0.097 | 0.745 | 0.262 | 0.262 | ||
Year | <0.001 | <0.001 | 0.020 | 0.011 | 0.052 | 0.003 | ||
BC1 dose and cultivation method | 0.529 | 0.529 | 0.616 | 0.545 | 0.078 | 0.078 | ||
BC1 dose and year | 0.108 | 0.107 | 0.012 | 0.069 | <0.001 | <0.001 | ||
cultivation method and year | 0.051 | 0.201 | 0.123 | 0.463 | <0.001 | 0.030 | ||
BC2 | Biochar dose (t·ha−1) | 80 | 1.172 a | 0.540 d | 0.256 c | 0.284 b | 0.092 b | 0.193 c |
60 | 1.264 b | 0.504 c | 0.246 bc | 0.258 a | 0.088 a | 0.170 bc | ||
40 | 1.353 c | 0.469 b | 0.220 b | 0.249 a | 0.091 b | 0.158 ab | ||
0 | 1.484 d | 0.406 a | 0.167 a | 0.240 a | 0.094 c | 0.145 a | ||
Cultivation method | Fallow | 1.280 a | 0.465 a | 0.205 a | 0.259 a | 0.091 a | 0.168 a | |
Soya | 1.356 b | 0.495 b | 0.239 b | 0.256 a | 0.091 a | 0.165 a | ||
Year | 2019 | 1.293 a | 0.497 b | 0.224 a | 0.273 b | 0.092 b | 0.181 b | |
2020 | 1.344 b | 0.462 a | 0.220 a | 0.243 a | 0.090 a | 0.152 a | ||
p-value | BC2 dose | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
cultivation method | <0.001 | <0.001 | <0.001 | 0.644 | 0.695 | 0.621 | ||
Year | <0.001 | <0.001 | 0.585 | <0.001 | 0.004 | <0.001 | ||
BC2 dose and cultivation method | 0.008 | 0.009 | 0.729 | 0.373 | 0.075 | 0.398 | ||
BC2 dose and year | 0.795 | 0.252 | 0.720 | 0.692 | <0.001 | 0.178 | ||
cultivation method and year | 0.103 | 0.089 | 0.002 | <0.011 | <0.001 | 0.004 |
Component | FC | PWP | AWC | SBD | TP | DP | Biochar Dose | Type of Biochar |
---|---|---|---|---|---|---|---|---|
FC | 1.000 | 0.139 | 0.936 * | −0.548 * | 0.561 * | 0.262 | 0.507 * | 0.007 |
PWP | 0.139 | 1.000 | −0.217 | −0.120 | 0.107 | 0.070 | −0.014 | −0.021 |
AWC | 0.936 * | −0.217 | 1.000 | −0.500 * | 0.517 * | 0.236 | 0.507 * | 0.013 |
SBD | −0.548 * | −0.120 | −0.500 * | 1.000 | −0.992 * | −0.941 * | −0.785 * | 0.030 |
TP | 0.561 * | 0.107 | 0.517 * | −0.992 * | 1.000 | 0.946 * | 0.776 * | 0.037 |
DP | 0.262 | 0.070 | 0.236 | −0.941 * | 0.946 * | 1.000 | 0.706 * | 0.041 |
Biochar dose | 0.507 * | −0.014 | 0.507 * | −0.785 * | 0.776 * | 0.706 * | 1.000 | 0.000 |
Type of biochar | 0.007 | −0.021 | 0.013 | 0.030 | 0.037 | 0.041 | 0.000 | 1.000 |
Component | FC | PWP | AWC | SBD | TP | DP | Biochar Dose | Type of Biochar |
---|---|---|---|---|---|---|---|---|
FC | 1.000 | −0.347 * | 0.982 * | −0.530 * | 0.566 * | −0.017 | 0.444 * | −0.062 |
PWP | −0.347 * | 1.000 | −0.518 * | 0.220 | −0.237 | −0.044 | −0.233 | −0.082 |
AWC | 0.982 * | −0.518 * | 1.000 | −0.527 * | 0.564 * | −0.008 | 0.452 * | −0.042 |
SBD | −0.530 * | 0.220 | −0.527 * | 1.000 | −0.991 * | −0.829 * | −0.869 * | −0.109 |
TP | 0.566 * | −0.237 | 0.564 * | −0.991 * | 1.000 | 0.814 * | 0.861 * | 0.169 |
DP | −0.017 | −0.044 | −0.008 | −0.829 * | 0.814 * | 1.000 | 0.732 * | 0.249 |
Biochar dose | 0.444 * | −0.233 | 0.452 * | −0.869 * | 0.861 * | 0.732 * | 1.000 | 0.000 |
Type of biochar | −0.062 | −0.082 | −0.042 | −0.109 | 0.169 | 0.249 | 0.000 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, U.; Zaleski, T.; Kuboń, M.; Latawiec, A.; Klimek-Kopyra, A.; Sikora, J.; Gliniak, M.; Kobyłecki, R.; Zarzycki, R. Effect of the Application of Sunflower Biochar and Leafy Trees Biochar on Soil Hydrological Properties of Fallow Soils and under Soybean Cultivation. Materials 2023, 16, 1737. https://doi.org/10.3390/ma16041737
Sadowska U, Zaleski T, Kuboń M, Latawiec A, Klimek-Kopyra A, Sikora J, Gliniak M, Kobyłecki R, Zarzycki R. Effect of the Application of Sunflower Biochar and Leafy Trees Biochar on Soil Hydrological Properties of Fallow Soils and under Soybean Cultivation. Materials. 2023; 16(4):1737. https://doi.org/10.3390/ma16041737
Chicago/Turabian StyleSadowska, Urszula, Tomasz Zaleski, Maciej Kuboń, Agnieszka Latawiec, Agnieszka Klimek-Kopyra, Jakub Sikora, Maciej Gliniak, Rafał Kobyłecki, and Robert Zarzycki. 2023. "Effect of the Application of Sunflower Biochar and Leafy Trees Biochar on Soil Hydrological Properties of Fallow Soils and under Soybean Cultivation" Materials 16, no. 4: 1737. https://doi.org/10.3390/ma16041737
APA StyleSadowska, U., Zaleski, T., Kuboń, M., Latawiec, A., Klimek-Kopyra, A., Sikora, J., Gliniak, M., Kobyłecki, R., & Zarzycki, R. (2023). Effect of the Application of Sunflower Biochar and Leafy Trees Biochar on Soil Hydrological Properties of Fallow Soils and under Soybean Cultivation. Materials, 16(4), 1737. https://doi.org/10.3390/ma16041737