Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- ·
- Filler trapping was observed at the Cu/SnAg pillar joints on the surface finishes. The EPIG samples had more filler trapping than the ENEPIG sample.
- ·
- The EPIG sample had higher contact resistance than the ENEPIG sample. The contact resistance difference came from the degree of the filler trapping.
- ·
- The EPIG sample had higher contact resistance with the thermal cycle than the ENEPIG sample. The contact resistance increase was due to the expansion of the trapped NCA resin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ki, W.M.; Kang, M.S.; Yoo, S.; Lee, C.W. Fabrication and Bonding Process of Fine Pitch Cu Pillar Bump on Thin Si Chip for 3D Stacking IC. In Proceedings of the 2011 IEEE International 3D Systems Integration Conference, 3DIC 2011, Osaka, Japan, 31 January–2 February 2012. [Google Scholar]
- Sa, Y.K.; Yoo, S.; Shin, Y.S.; Han, M.K.; Lee, C.W. Joint Properties of Solder Capped Copper Pillars for 3D Packaging. In Proceedings of the Electronic Components and Technology Conference, Las Vegas, NV, USA, 1–4 June 2010. [Google Scholar]
- Park, J.Y.; Lee, T.; Seo, W.; Yoo, S.; Kim, Y.H. Electromigration Reliability of Sn–3.0Ag–0.5Cu/Cu–Zn Solder Joints. J. Mater. Sci. Mater. Electron. 2019, 30, 7645–7653. [Google Scholar] [CrossRef]
- Lee, T.Y.; Kim, M.S.; Ko, Y.H.; Kim, Y.H.; Yoo, S. Epoxy/Silane Pre-Synthesis Improving Thermal Properties and Adhesion Strength of Silica-Filled Non-Conductive Adhesive for Fine-Pitch Thermocompression Bonding. J. Mater. Sci. Mater. Electron. 2020, 31, 1227–1235. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, J.Y.; Park, H.P.; Kim, S.C.; Lee, T.Y.; Yoo, S.; Kim, Y.H. Joint Properties and Reliability of Cu/Sn-Ag Pillar Bumps via Low-Temperature Thermo-Compression Bonding. Microelectron. Eng. 2019, 216, 110973. [Google Scholar] [CrossRef]
- Gagnon, P.; Bergeron, C.; Langlois, R.; Barbeau, S.; Whitehead, S.; Tyberg, C.; Robertazzi, R.; Sakuma, K.; Wordeman, M.; Scheurmann, M. Thermo-Compression Bonding and Mass Reflow Assembly Processes of 3D Logic Die Stacks. In Proceedings of the Electronic Components and Technology Conference, Orlando, FL, USA, 30 May–2 June 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 116–122. [Google Scholar]
- Ratzker, M.; Pearl, A.; Osterman, M.; Pecht, M.; Milad, G. Review of Capabilities of the ENEPIG Surface Finish. J. Electron. Mater. 2014, 43, 3885–3897. [Google Scholar] [CrossRef]
- Kwon, S.H.; Kim, K.D.; Han, D.G.; Sung, T.H.; Lee, C.W.; Yoo, S. Effect of Interfacial Reaction Layer on the Brittle Fracture of the SAC305 Solder Joint on ENIG and ENEPIG Surface Finish. In Proceedings of the 2012 14th International Conference on Electronic Materials and Packaging (EMAP), Hong Kong, 13–16 December 2012; pp. 4–6. [Google Scholar] [CrossRef]
- Back, J.-H.; Yoo, S.; Han, D.-G.; Jung, S.-B.; Yoon, J.-W. Interfacial Reactions and Mechanical Strength of Sn-3.0Ag-0.5Cu/0.1㎛-Ni Thin ENEPIG Solder Joint. J. Weld. Join. 2017, 35, 51–58. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.F.; Duh, J.G. Correlation between Microstructure Evolution and Mechanical Strength in the Sn-3.0Ag-0.5Cu/ENEPIG Solder Joint. Mater. Sci. Eng. A 2013, 580, 169–174. [Google Scholar] [CrossRef]
- Huang, C.K.; Lin, K.W.; Huang, Y.M.; Caparanga, A.R.; Leron, R.B.; Li, M.H. Effect of Thickness and Phosphorus Content on Au/Pd/Ni(P) Metal Finish of Printed Circuit Board. J. Electron. Mater. 2013, 42, 2648–2657. [Google Scholar] [CrossRef]
- Gross, A.; Sitte, N. Nickel-Free Final Finishes in the Electronics Industry. In Proceedings of the 20th European Microelectronics and Packaging Conference and Exhibition: Enabling Technologies for a Better Life and Future, EMPC 2015, Friedrichshafen, Germany, 4–16 September 2015; pp. 1–4. [Google Scholar]
- Shah, K. Novel Surface Finish for Next Generation Wafer Level Packaging Applications. In Proceedings of the 2020 International Wafer Level Packaging Conference, IWLPC 2020, Virtual Event, 13–30 October 2020. [Google Scholar]
- Moon, S.; Nagalingam, D.; Quah, A.C.T.; Ang, G.B.; Ng, H.P.; Teo, A.; Xu, N.Y.; Mai, Z.H.; Lam, J. Detection of Solder Bump Marginal Contact Resistance Degradation using 4-point Resistance Measurement Method. In Proceedings of the IEEE 23rd International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA 2016, Singapore, 18–21 July 2016; pp. 11–16. [Google Scholar]
- Kang, Y.J.; Hong, M.E.; Kim, D.H. Study on Soft Etching Material Development to Improve Peel Strength between Surface of Copper and Solder Resist Ink. J. Korean Ind. Eng. Chem. 2009, 20, 172–176. [Google Scholar]
- Lee, H.K.; Chun, M.H.; Chun, Y.C.; Oh, K.-S. A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish. J. Microelectron. Packag. Soc. 2015, 22, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Park, J.-Y.; Kim, Y.-H. Effect of Pd Thickness on the Interfacial Reaction and Shear Strength in Solder Joints Between Sn-3.0Ag-0.5Cu Solder and Electroless Nickel/Electroless Palladium/Immersion Gold (ENEPIG) Surface Finish. J. electron. Mater. 2012, 41, 763–773. [Google Scholar] [CrossRef]
- Lee, S.M.; Kim, B.G.; Kim, Y.H. Non-Conductive Adhesive (NCA) Trapping Study in Chip on Glass Joints Fabricated Using Sn Bumps and NCA. Mater. Trans. 2008, 49, 2100–2106. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Koshi, T.; Arai, K.; Machida, Y.; Oi, K.; Tamadate, Y.; Sohara, T.; Araki, Y.; Ozawa, T. Development of a Novel Thermal Compression Flip Chip Bonding with Pre-Applied NCF Underfill. In Proceedings of the 2012 2nd IEEE CPMT Symposium Japan, ICSJ 2012, Kyoto, Japan, 10–12 December 2012. [Google Scholar] [CrossRef]
- Park, H.P.; Kim, S.; Lee, T.; Yoo, S.; Kim, Y.H.; Park, J.Y.P. The Reliability and the Effect of NCA Trapping in Thermo-Compression Flip-Chip Solder Joints Fabricated Using Sn-Ag Solder Capped 40 Μm Pitch Cu Pillar Bumps and Low Temperature Curable Non-Conductive Adhesive (NCA). In Proceedings of the 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), San Diego, CA, USA, 29 May–1 June 2018; pp. 1937–1941. [Google Scholar] [CrossRef]
- Kim, S.C.; Lee, J.Y.; Park, J.Y.; Lee, T.Y.; Kim, Y.H. The Effect of Solder Wetting on Nonconductive Adhesive (NCA) Trapping in NCA Applied Flip-Chip Bonding. J. Mater. Sci. Mater. Electron. 2016, 27, 6646–6655. [Google Scholar] [CrossRef]
- Chan, Y.C.; Tan, S.C.; Lui, N.S.M.; Tan, C.W. Electrical Characterization of NCP- and NCF-Bonded Fine-Pitch Flip-Chip-on-Flexible Packages. IEEE Trans. Adv. Packag. 2007, 30, 142–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jun, S.-Y.; Bang, J.-H.; Kim, M.-S.; Han, D.-G.; Lee, T.-Y.; Yoo, S. Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish. Materials 2023, 16, 1739. https://doi.org/10.3390/ma16041739
Jun S-Y, Bang J-H, Kim M-S, Han D-G, Lee T-Y, Yoo S. Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish. Materials. 2023; 16(4):1739. https://doi.org/10.3390/ma16041739
Chicago/Turabian StyleJun, So-Yeon, Jung-Hwan Bang, Min-Su Kim, Deok-Gon Han, Tae-Young Lee, and Sehoon Yoo. 2023. "Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish" Materials 16, no. 4: 1739. https://doi.org/10.3390/ma16041739
APA StyleJun, S. -Y., Bang, J. -H., Kim, M. -S., Han, D. -G., Lee, T. -Y., & Yoo, S. (2023). Thermo-Compression Bonding of Cu/SnAg Pillar Bumps with Electroless Palladium Immersion Gold (EPIG) Surface Finish. Materials, 16(4), 1739. https://doi.org/10.3390/ma16041739