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Abstract: Thermo‑compression bonding (TCB) properties of Cu/SnAg pillar bumps on electroless
palladium immersion gold (EPIG) were evaluated in this study. A test chip with Cu/SnAg pillar
bumps was bonded on the surface‑finished Cu pads with the TCBmethod. The surface roughness of
the EPIG was 82 nm, which was 1.6 times higher than that of the ENEPIG surface finish because the
EPIG was so thin that it could not flatten rough bare Cu pads. From the cross‑sectional SEM micro‑
graphs, the filler trapping of the TC‑bonded EPIGwas much higher than that of the ENEPIG sample.
The high filler trapping of the EPIG sample was due to the high surface roughness of the EPIG sur‑
face finish. The contact resistance increased as the thermal cycle time increased. The increase of the
contact resistance with 1500 cycles of the thermal cycle test was 26% higher for the EPIG sample than
for the ENEPIG sample.

Keywords: thermo‑compression bonding (TCB); electroless palladium immersion gold (EPIG); elec‑
troless nickel electroless palladium immersion gold (ENEPIG)

1. Introduction
Recent improvements in performance and node size decrease in semiconductors lead

to a lowering in the bump pitch of the semiconductor package [1–3]. The fine‑pitch semi‑
conductor packages have brought about a huge change in the flip‑chip bonding process
and materials. A thermo‑compression bonding (TCB) with non‑conductive adhesive
(NCA) is increasingly replacing traditional mass flowC4 processes [4–6]. Substrate pads to
which the chip bumps are bonded are also finer, and therefore, the thickness of the surface
finish plated on the substrate pad should be thinner than at least half of the pad pitch. An
electroless nickel electroless palladium immersion gold (ENEPIG) surface finish has been
widely used for highly reliablemobile devices due to its long‑term shelf life and is good for
multiple heat treatments [7–9]. In addition, the palladium layer in the ENEPIG prevents
the corrosion of the Ni–P layer, which enhances solder wettability [10,11]. However, the
total thickness of the ENEPIG surface finish is 4~5 µm, which causes concerns about bridg‑
ing adjacent pads at the fine pitch pads. Moreover, the electroless nickel in the ENEPIG
surface finish is ferromagnetic, which causes an adverse effect that attenuates a signal in
the 5G application [12,13]. Recently, Ni‑less surface finishes, electroless palladium immer‑
sion gold (EPIG), have been developed to overcome the signal attenuation and to apply the
fine pitch substrate [12]. The thickness of the EPIG surface finish was lower than 0.5 µm.
In addition, The Ni‑less surface finish showed 45% lower signal loss at 50 GHz than con‑
ventional Ni‑included surface finishes such as ENIG since there was no ferromagnetic Ni
layer in EPIG [13]. Therefore, the Ni‑less surface finishes are expected to be widely applied
in 5G/6G communications.

Compared with the conventional ENEPIG, the TCB joint characteristics of the EPIG
surface finishes with Cu pillar bumps have rarely been reported. Therefore, the TCB joint
characteristics of the Cu pillar joints on the EPIG need to be investigated. In this study, TCB
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with NCAwas used for the Cu pillar bump joints with diameters of 30 µm. The interfacial
reactions and electrical contract resistance of the joints were evaluated to understand the
effect of surface finishes on the joint properties.

2. Materials and Methods
A Si test chip with Cu/Sn‑3.5wt%Ag (Cu/SnAg) pillar bumps and a bismaleimide tri‑

azine (BT) substrate were used in this study, as shown in Figure 1. The Cu/Sn3.5Agmeans
a bump structure with Sn‑3.5wt%Ag solder on the Cu pillar bump. The size of the test
chip and the substrate were 4.4 × 4.4 mm2 and 10 × 10 mm2, respectively. Cu/SnAg pil‑
lar bumps were formed on the test chip and are shown in Figure 2. The diameter of the
Cu/SnAg pillar bumps was 30 µm. The heights of the Cu pillar and SnAg cap of the pillar
bumps were 15 µm and 10 µm, respectively. The total number of pillar bumps on a test
chip was 735.
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Figure 2. (a) Schematic and (b) SEM micrograph of Cu/SnAg pillar bump.

Before the electroless plating process of the EPIG, a pre‑treatment was performed to
clean and strengthen the adhesion of the surface finish. First, the pre‑treatment consisted
of degreasing, soft‑etching, and catalyst treatments. The degreasing was performed for
the purpose of removing contaminants on the substrate, and the degreasing conditions
were 45 ◦C for 5 min. Next, soft etching was performed to provide strong adhesion to the
solder resist by forming surface roughness on the Cu pad. Soft etchant was produced by
dissolving 100 g of a soft etching solution (Oxone PS‑16, Dupont, Wilmington, NC, USA)
with 15 mL of 95% sulfuric acid. The soft etching condition was 27 ◦C for 70 s. Finally, the
surface activation process was performed by dipping the substrate in palladium catalyst
solution (ICP Accera H series, MK Chem. & Tech., Ansan, Republic of Korea) at 27 ◦C for
1 min.

For the EPIG surface finish, electroless palladiumand substitutional gold platingwere
carried out at 65 ◦C and 83 ◦C, respectively. The electroless palladium plating and substi‑
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tution gold plating solutions were obtained from MK Chem & Tech (Neozen Pd‑P, Flash
Gold IG‑10, respectively). As a control sample, ENEPIG surface finish was also fabricated.
The electroless nickel plating solution was obtained fromMKChem. & Tech. (NeozenMP‑
K Series), and the plating temperature was 83 ◦C. The Pd and Au plating processes were
the same as those of the EPIG surface finish. The schematic diagrams of the EPIG and the
ENEPIG surface finishes are shown in Figure 3. The thicknesses of the palladium and gold
layers in EPIG were 0.1 and 0.1 µm, and the thicknesses of the nickel, palladium, and gold
layers in ENEPIG were 5, 0.1, and 0.1 µm, respectively. A daisy chain and Kelvin struc‑
ture electrodes were formed on the substrate to measure electrical resistance and contact
resistance.
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Figure 3. Schematics of the surface finishes; (a) electroless palladium immersion gold (EPIG) and (b)
electroless nickel electroless palladium immersion gold (ENEPIG).

The Cu/SnAg pillar bumps of the test chip and the surface‑finished Cu pad of the test
substratewere bonded to each other through a TCB techniquewith a flip‑chip bonder (NM‑
SB50A, Panasonic, Osaka, Japan). Before the TCB process, non‑conductive adhesive (NCA)
was dispensed to the substrate. The NCA formulation method can be found elsewhere [4].
The NCA included 55 wt% silica fillers with a size of 800 nm. After dispensing the NCA,
the test chip was aligned to the NCA‑dispensed substrate and bonded with a pressure of
20 N. The schematic of the bonding process and temperature profile is shown in Figure 4,
and the TCB sample is shown in Figure 5. The peak temperature of the TCB was 250 ◦C,
and the hold time at the peak temperature was 5 s. Following the TCB process, the NCA
was post‑cured at 160 ◦C for 60 s in an oven.
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Figure 5. Optical micrograph of thermo‑compression (TC)‑bonded test sample.

The roughness of the EPIG and ENEPIG surface finishes and the joint Cu/SnAg pillar
bumps on the Cu pads were observed with scanning electron microscopy (SEM; Inspect
F, FEI Co., Hillsboro, OR, USA), and the chemical composition of the solder joint interface
was observedwith energy‑dispersive X‑ray spectroscopy (EDS; Superdry II, TheromFisher
Scientific,Waltham, USA). The surfacemorphology of the surface finishwas observedwith
atomic forcemicroscopy (AFM; XE7, Park System, Suwon, Republic of Korea). To evaluate
the reliability of the surface finishes, a thermal cycling test was conducted with a thermal
cycling tester (VCS 7027‑15, Votsch, Balingen, Germany) for 1500 cycles. The temperature
range of the one cycle was from −55 ◦C to 125 ◦C. Additionally, the contact resistance
was measured during the thermal cycle test. The electrical contact resistance of a Cu/SnAg
pillar bump joint was evaluated with a four‑point probe (Everbeing, C‑6) [14]. A Kelvin
structure, which was a specially designed pattern for the four‑probe measurement, was
fabricated on the chip and to measure the contact resistance, as shown in Figure 6. To mea‑
sure the contact resistance, an electric current was applied through the electrodes marked
I1 and I2, and voltage was measured between V1 and V2. We measured the contact resis‑
tance of 16 bumps and obtained the average and standard deviation.
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for the contact resistance measurement.

3. Results and Discussion
The surfaces of the bare Cu, EPIG, and ENEPIG surface‑finished pads were observed

with SEM and shown in Figure 7. From the enlarged top view of the surface finish, the
surface of the bare Cu pad was much rougher than that of the surface‑finished pads. Such
a rough surface of the bare Cu pad was due to the soft etching process. A soft etching
is a process that removes Cu oxide and provides surface irregularity to improve adhesion
between the Cu pad and solder resist [15]. For the EPIG sample, the surface roughness was
slightly decreased compared to the bare Cu pad. The ENEPIG surface finish was relatively
smooth compared to bare Cu and EPIG. This was because the rough surface of bare Cu
was covered with a 5 µm thick electroless nickel layer.
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Figure 7. Scanning electronmicrographs of (a) bare Cu, (b) EPIG, and (c) ENEPIG. Left images show
tiled view, and right images show the enlarged top view of the surface finishes.

The surface topographies and the line profiles of the soft‑etched bare Cu pad and
surface‑finished pads were observed with AFM and shown in Figure 8. From the surface
topographies, the surfaces of the EPIG and ENEPIG finishes were smoother than the soft‑
etched Cu pad, which indicated that the surface finish process clearly lowered the surface
roughness of the Cu pad. From the line profile measurement, the root‑mean‑square (RMS)
roughness values of the bare Cu pad, EPIG, and ENEPIG finishes were approximately 90,
82, and 50 nm, respectively, which was evaluated from the line profile in Figure 8.
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The surface roughness of EPIG was 1.6 times higher than that of ENEPIG. The sur‑
face roughness differences among the surface finishes can be explained with a schematic
(Figure 9). Before the surface finish plating process, the Cu pad had a high surface rough‑
ness due to the soft etching process. The high surface roughness of these Cupads gradually
decreased as the surface finish layer was coated on the Cu pad. As the plating thickness
increased, the rough surface became smoother because the surface finishes covered the
Cu pad. The EPIG had high surface roughness since the EPIG had a nanoscale thin layer,
which was too thin to cover the rough Cu pad. On the other hand, the surface finish of
ENEPIG exhibited low roughness because the Cu pad was significantly covered with a
thick (5 µm) nickel layer. Therefore, the surface roughness of the Cu pad was distinctively
affected by the thickness of the surface finish.
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Figure 10 shows TC‑bonded Cu/SnAg pillar bumps on surface‑finished Cu pads. An
intermetallic compound (IMC) was formed between solder and surface finishes. For the
EPIG surface finish, the IMC phases were (Cu,Pd)6Sn5 and (Pd,Cu)Sn4, as observed by
EDS. On the other hand, the IMC of the ENEPIG surface finish was Ni3Sn4, as reported
by many research groups [7–9,16,17]. In addition, the trapped NCA filler was observed in
the lower part of the solder (see Figure 10). NCA resin was also observed near the trapped
fillers. The NCA pillar was silica with an average diameter of 800 nm. The role of the silica
filler is to lower the coefficient of thermal expansion (CTE) of the NCA, which ensures the
reliability of the TCB joints [5]. During the TCB process, the downward force of the bump
squeezed out most of the fillers, but few fillers remained at the solder joint interface. Such
filler trapping adversely affects the reliability of the pillar bump joints [5,16]. When the
filler is trapped at the solder joint interface, the NCA resin is also trapped. As a result, the
trapped NCA resin can cause cracking and delamination during the thermal cycle.
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Generally, filler traps in the pillar bump joints substantially led to a contact resistance
increase because the contact area between a bump and a Cu pad decreased [18–21]. To
evaluate the degree of the filler trapping of the Cu/SnAg pillar bump joints quantitatively,
the contact resistance was measured and shown in Figure 11. The contact resistances of
EPIG and ENEPIG were approximately 4.2 and 3.5 mΩ, respectively. The average contact
resistance of ENEPIG was lower than that of EPIG. The higher contact resistance of the
EPIG sample indicated that the EPIG had a higher degree of filler trapping at the pillar
bump joint. Lee et al. [18] reported that the surface roughness of the bump significantly
affects the amount of filler trapping. Park et al. [20] also reported that a smooth Cu pad
sample showed lower filler trapping than a roughCupad sample for low‑temperature TCB.
In this study, the roughness of EPIG was higher than that of ENEPIG surface finish, and
the high roughness of the EPIG sample increased the filler trap and the contact resistance.
The rough surfaces of the EPIG surface finishes had more dimples and valleys than that of
the ENEPIG surface finish. These dimples and valleys finally become the entrapment sites
for the filler and resin during the bonding process [22].

Figure 12 shows the contact resistance change of each surface finish sample during a
thermal cycle test. At cycle 0, the contact resistance difference between EPIG and ENEPIG
was 0.7 mΩ. As the cycles increased, the difference in contact resistance between the EPIG
and ENEPIG samples gradually increased. At cycle 1500, the contact resistances of the
EPIG and ENEPIG samples were approximately 75.8 and 62.3 mΩ, respectively. The con‑
tact resistance difference between the EPIG and the ENEPIG sample was 13.5 mΩ. The
lower contact resistance of the ENEPIG sample than that of the EPIG sample showed that
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the ENEPIG sample had fewer defects than the EPIG sample. Since all samples were
bonded under the same conditions, the difference in contact resistance came from the de‑
gree of the filler trapping. The contact resistance increased with the increasing thermal
cycle due to the expansion of the resin included with the trapped fillers. Thus far, we have
reported the TC bonding properties of the EPIG surface finish with Cu/SnAg pillar bumps.
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Figure 12. Contact resistance of Cu/SnAg pillar bump joints on EPIG and ENEPIG surface finishes
with thermal cycling test.

The surface roughness differences affected contact resistance and TC reliability due to
NCA filler trapping. Therefore, lowering the surface roughness of the EPIG surface finish
should be required for the adoption of the Ni‑less surface finish for TC bonding.

4. Conclusions
In this study, the TC bonding properties of Cu/SnAg pillar bumps on EPIGwere eval‑

uated with the electrical contact resistance. The following conclusions have been drawn
on the basis of these experiments:
· Filler trapping was observed at the Cu/SnAg pillar joints on the surface finishes. The

EPIG samples had more filler trapping than the ENEPIG sample.
· The EPIG sample had higher contact resistance than the ENEPIG sample. The contact

resistance difference came from the degree of the filler trapping.
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· The EPIG sample had higher contact resistance with the thermal cycle than the
ENEPIG sample. The contact resistance increase was due to the expansion of the
trapped NCA resin.
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