Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ Nickelates as Potential Electrocatalysts for Solid Oxide Cells
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Phase Composition, Crystal Structure and Microstructure
3.2. Oxygen Nonstoichiometry
3.3. Electrical Conductivity
3.4. Oxygen Permeability and Ionic Transport
3.5. Thermal Expansion
3.6. High-Temperature Chemical Compatibility with Other Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, R.J.; Yeh, C.T. Activation energy for thermal decomposition of nitric oxide. Int. J. Chem. Kinet. 1996, 28, 89–94. [Google Scholar] [CrossRef]
- Garin, F. Mechanism of NOx decomposition. Appl. Catal. A 2001, 222, 183–219. [Google Scholar] [CrossRef]
- Pancharatnam, S.; Huggins, R.A.; Mason, D.M. Catalytic decomposition of nitric oxide on zirconia by electrolytic removal of oxygen. J. Electrochem. Soc. 1975, 122, 869–875. [Google Scholar] [CrossRef]
- Gür, T.M.; Huggins, R.A. Decomposition of nitric oxide on zirconia in a solid-state electrochemical cell. J. Electrochem. Soc. 1979, 126, 1067–1075. [Google Scholar] [CrossRef]
- Traulsen, M.L.; Andersen, K.B.; Hansen, K.K. NOx conversion on LSM15-CGO10 cell stacks with BaO impregnation. J. Mater. Chem. 2012, 22, 11792–11800. [Google Scholar] [CrossRef] [Green Version]
- Traulsen, M.L.; Bræstrup, F.; Hansen, K.K. NOx conversion on porous LSF15-CGO10 cell stacks with KNO3 or K2O impregnation. J. Solid State Electrochem. 2012, 16, 2651–2660. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Hansen, K.K. Enhancement of NOx removal performance for (La0.85Sr0.15)0.99MnO3/Ce0.9Gd0.1O1.95 electrochemical cells by NOx storage/reduction adsorption layers. Electrochim. Acta 2013, 90, 482–491. [Google Scholar] [CrossRef]
- Shao, J.; Tao, Y.; Hansen, K.K. Highly selective NOx reduction for diesel engine exhaust via an electrochemical system. Electrochem. Commun. 2016, 72, 36–40. [Google Scholar] [CrossRef]
- Yokoi, Y.; Uchida, H. Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments. Catal. Today 1998, 42, 167–174. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T. Advances in direct NOx decomposition catalysts. Appl. Catal. A 2012, 431–432, 1–8. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, D.; Yuan, F.; Zhang, G.; Fu, H. Direct NO decomposition over La2−xBaxNiO4 catalysts containing BaCO3 phase. Appl. Catal. B 2008, 82, 255–263. [Google Scholar] [CrossRef]
- Teraoka, Y.; Harada, T.; Kagawa, S. Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides. J. Chem. Soc. Faraday Trans. 1998, 94, 1887–1891. [Google Scholar] [CrossRef]
- Das, A.; Xhafa, E.; Nikolla, E. Electro- and thermal-catalysis by layered, first series Ruddlesden-Popper oxides. Catal. Today 2016, 277, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden-Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519–2565. [Google Scholar] [CrossRef]
- Ding, P.; Li, W.; Zhao, H.; Wu, C.; Zhao, L.; Dong, B.; Wang, S. Review on Ruddlesden-Popper perovskites as cathode for solid oxide fuel cells. J. Phys. Mater. 2021, 4, 022002. [Google Scholar] [CrossRef]
- Tarutin, A.P.; Lyagaeva, J.G.; Medvedev, D.A.; Bi, L.; Yaremchenko, A.A. Recent advances in layered Ln2NiO4+δ nickelates: Fundamentals and prospects of their applications in protonic ceramic fuel and electrolysis cells. J. Mater. Chem. A 2021, 9, 154–195. [Google Scholar] [CrossRef]
- Takeda, Y.; Kanno, R.; Sakano, M.; Yamamoto, O.; Takano, M.; Bando, Y.; Akinaga, H.; Takita, K.; Goodenough, J.B. Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6). Mater. Res. Bull. 1990, 25, 293–306. [Google Scholar] [CrossRef]
- Nakamura, T.; Yashiro, K.; Sato, K.; Mizusaki, J. Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ. Solid State Ion. 2009, 180, 368–376. [Google Scholar] [CrossRef]
- Nakamura, T.; Yashiro, K.; Sato, K.; Mizusaki, J. Electronic state of oxygen nonstoichiometric La2−xSrxNiO4+δ at high temperatures. Phys. Chem. Chem. Phys. 2009, 11, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Lee, Y.L.; Shao-Horn, Y.; Morgan, D. Oxygen Point Defect Chemistry in Ruddlesden-Popper Oxides (La1−xSrx)2MO4±δ (M = Co, Ni, Cu). J. Phys. Chem. Lett. 2016, 7, 1939–1944. [Google Scholar] [CrossRef] [Green Version]
- Kravchenko, E.; Zakharchuk, K.; Viskup, A.; Grins, J.; Svensson, G.; Pankov, V.; Yaremchenko, A. Impact of oxygen deficiency on the electrochemical performance of K2NiF4-type (La1−xSrx)2NiO4−δ oxygen electrodes. ChemSusChem 2017, 10, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Austin, A.B.; Carreiro, L.G.; Marzik, J.V. Structural, magnetic, and electrical properties of La2−xBaxNiO4. Mater. Res. Bull. 1989, 24, 639–646. [Google Scholar] [CrossRef]
- Niemczyk, A.; Merkle, R.; Maier, J.; Świerczek, K. Defect chemistry and proton uptake of La2−xSrxNiO4±δ and La2−xBaxNiO4±δ Ruddlesden-Popper phases. J. Solid State Chem. 2022, 306, 122731. [Google Scholar] [CrossRef]
- DiCarlo, J.; Mehta, A.; Banschick, D.; Navrotsky, A. The energetics of La2−xAxNiO4−y (A = Ba, Sr). J. Solid State Chem. 1993, 103, 186–192. [Google Scholar] [CrossRef]
- Tang, J.P.; Dass, R.I.; Manthiram, A. Comparison of the crystal chemistry and electrical properties of La2−xAxNiO4 (A = Ca, Sr, and Ba). Mater. Res. Bull. 2000, 35, 411–424. [Google Scholar] [CrossRef]
- Alonso, J.A.; Amador, J.; Gutiérrez-Puebla, E.; Monge, M.A.; Rasines, I.; Ruíz-Valero, C.; Campá, J.A. Persistence of the La2NiO4 crystal structure in La2−xBaxNiO4 samples with high Ba contents (x ≤ 1). Solid State Commun. 1990, 76, 1327–1331. [Google Scholar] [CrossRef]
- Chen, L.; Niu, X.; Li, Z.; Dong, Y.; Wang, D.; Yuan, F.; Zhu, Y. The effects of BaO on the catalytic activity of La1.6Ba0.4NiO4 in direct decomposition of NO. J. Mol. Catal. A 2016, 423, 277–284. [Google Scholar] [CrossRef]
- Kharton, V.V.; Tikhonovich, V.N.; Shuangbao, L.; Naumovich, E.N.; Kovalevsky, A.V.; Viskup, A.P.; Bashmakov, I.A.; Yaremchenko, A.A. Ceramic microstructure and oxygen permeability of SrCo(Fe,M)O3−δ (M = Cu or Cr) perovskite membranes. J. Electrochem. Soc. 1998, 145, 1363–1374. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Kolotygin, V.A.; Shaula, A.L.; Kharton, V.V.; Snijkers, F.M.M.; Buekenhoudt, A.; Frade, J.R.; Naumovich, E.N. Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J. Membr. Sci. 2011, 380, 68–80. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Takeda, Y.; Nishijima, M.; Imanishi, N.; Kanno, R.; Yamamoto, O.; Takano, M. Crystal chemistry and transport properties of Nd2−xAxNiO4 (A = Ca, Sr, or Ba, 0 ≤ x ≤ 1.4). J. Solid State Chem. 1992, 96, 72–83. [Google Scholar] [CrossRef]
- Lander, J.J. The phase system BaO-NiO. J. Am. Chem. Soc. 1951, 73, 2450–2452. [Google Scholar] [CrossRef]
- Lander, J.J.; Wooten, L.A. Barium-nickel oxides with tri- and tetravalent nickel. J. Am. Chem. Soc. 1951, 73, 2452–2454. [Google Scholar] [CrossRef]
- BaO-NiO Phase Diagram, FactSage—The Integrated Thermodynamic Databank System, Thermfact/CRCT & GTT-Technologies. Available online: www.factsage.com (accessed on 12 January 2023).
- Millburn, J.E.; Green, M.A.; Neumann, D.A.; Rosseinsky, M.J. Evolution of the structure of the K2NiF4 phases La2−xSrxNiO4+δ with oxidation state: Octahedral distortion and phase separation (0.2 ≤ x ≤ 1.0). J. Solid State Chem. 1999, 145, 401–420. [Google Scholar] [CrossRef]
- Arbuckle, B.W.; Ramanujachary, K.V.; Zhang, Z.; Greenblatt, M. Investigations on the structural, electrical, and magnetic properties of Nd2−xSrxNiO4+δ. J. Solid State Chem. 1990, 88, 278–290. [Google Scholar] [CrossRef]
- Gopalakrishnan, I.; Colsmann, G.; Reuter, B. Studies on the La2−xSrxNiO4 (0 ≤ x ≤ 1) system. J. Solid State Chem. 1977, 22, 145–149. [Google Scholar] [CrossRef]
- Shibahara, H. Electron microscopic study on the structure of an intermediate phase with the composition of BaNiOx (2 < x < 3). J. Solid State Chem. 1987, 69, 81–92. [Google Scholar] [CrossRef]
- Campá, J.A.; Gutiérrez-Puebla, E.; Monge, M.A.; Rasines, I.; Ruíz-Valero, C. Nickel supermixed valence in stoichiometric BaNi0.83O2.5. J. Solid State Chem. 1994, 108, 230–235. [Google Scholar] [CrossRef]
- Arévalo-López, A.M.; Huvé, M.; Simon, P.; Mentré, O. The hidden story in BaNiO3 to BaNiO2 transformation: Adaptive structural series and NiO exsolution. Chem. Commun. 2019, 55, 3717–3720. [Google Scholar] [CrossRef] [Green Version]
- Skinner, S.J. Characterisation of La2NiO4+δ using in-situ high temperature neutron powder diffraction. Solid State Sci. 2003, 5, 419–426. [Google Scholar] [CrossRef]
- Kharton, V.V.; Kovalevsky, A.V.; Avdeev, M.; Tsipis, E.V.; Patrakeev, M.V.; Yaremchenko, A.A.; Naumovich, E.N.; Frade, J.R. Chemically induced expansion of La2NiO4+δ-based materials. Chem. Mater. 2007, 19, 2027–2033. [Google Scholar] [CrossRef]
- Kravchenko, E.; Khalyavin, D.; Zakharchuk, K.; Grins, J.; Svensson, G.; Pankov, V.; Yaremchenko, A. High-temperature characterization of oxygen-deficient K2NiF4-type Nd2−xSrxNiO4−δ (x = 1.0–1.6) for potential SOFC/SOEC applications. J. Mater. Chem. A 2015, 3, 23852–23863. [Google Scholar] [CrossRef]
- Mizusaki, J.; Waragai, K.; Tsuchiya, S.; Tagawa, H.; Arai, Y.; Kuwayama, Y. Simple mathematical model for the electrical conductivity of highly porous ceramics. J. Am. Ceram. Soc. 1996, 79, 109–113. [Google Scholar] [CrossRef]
- Vashook, V.; Girdauskaite, E.; Zosel, J.; Wen, T.L.; Ullmann, H.; Guth, U. Oxygen non-stoichiometry and electrical conductivity of Pr2−xSrxNiO4±δ with x = 0–0.5. Solid State Ion. 2006, 177, 1163–1171. [Google Scholar] [CrossRef]
- Naumov, S.V.; Vlasov, M.I.; Pikalova, E.Y.; Tsvinkinberg, V.A.; Reznitskikh, O.G.; Filonova, E.A. Effect of Ni non-stoichiometry on the structural, thermal and conductivity properties of Nd2Ni1−xO4+δ. Solid State Ion. 2023, 389, 116082. [Google Scholar] [CrossRef]
- Aguadero, A.; Escudero, M.J.; Pérez, M.; Alonso, J.A.; Pomjakushin, V.; Daza, L. Effect of Sr content on the crystal structure and electrical properties of the system La2−xSrxNiO4+δ (0 ≤ x ≤ 1). Dalton Trans. 2006, 4377–4383. [Google Scholar] [CrossRef] [PubMed]
- Naumovich, E.N.; Patrakeev, M.V.; Kharton, V.V.; Yaremchenko, A.A.; Logvinovich, D.I.; Marques, F.M.B. Oxygen nonstoichiometry in La2Ni(M)O4+δ (M = Cu, Co) under oxidizing conditions. Solid State Sci. 2005, 7, 1353–1362. [Google Scholar] [CrossRef]
- Chroneos, A.; Parfitt, D.; Kilner, J.A.; Grimes, R.W. Anisotropic oxygen diffusion in tetragonal La2NiO4+δ: Molecular dynamics calculations. J. Mater. Chem. 2010, 20, 266–270. [Google Scholar] [CrossRef] [Green Version]
- Filonova, E.; Gilev, A.; Maksimchuk, T.; Pikalova, N.; Zakharchuk, K.; Pikalov, S.; Yaremchenko, A.; Pikalova, E. Development of La1.7Ca0.3Ni1−yCuyO4+δ materials for oxygen permeation membranes and cathodes for intermediate-temperature solid oxide fuel cells. Membranes 2022, 12, 1222. [Google Scholar] [CrossRef]
- Shaula, A.L.; Naumovich, E.N.; Viskup, A.P.; Pankov, V.V.; Kovalevsky, A.V.; Kharton, V.V. Oxygen transport in La2NiO4+δ: Assessment of surface limitations and multilayer membrane architectures. Solid State Ion. 2009, 180, 812–816. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.M.; Burggraaf, A.J. Dense ceramic membranes for oxygen separation. In Fundamentals of Inorganic Membrane Science and Technology; Burggraaf, A.J., Cot, L., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 4, pp. 435–528. [Google Scholar] [CrossRef]
- Montenegro Hernández, A.; Mogni, L.; Caneiro, A. La2NiO4+δ as cathode for SOFC: Reactivity study with YSZ and CGO electrolytes. Int. J. Hydrogen Energy 2010, 35, 6031–6036. [Google Scholar] [CrossRef]
- Han, D.; Uda, T. The best composition of an Y-doped BaZrO3 electrolyte: Selection criteria from transport properties, microstructure, and phase behavior. J. Mater. Chem. A 2018, 6, 18571–18582. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.J.; McDaniel, C.L. The BaO-Pt system in air. J. Am. Ceram. Soc. 1969, 52, 518–519. [Google Scholar] [CrossRef]
- Ropp, R.C. Encyclopedia of the Alkaline Earth Compounds; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1044–1048. [Google Scholar] [CrossRef]
- Casapu, M.; Grunwaldt, J.D.; Maciejewski, M.; Baiker, A.; Eckhoff, S.; Göbel, U.; Wittrock, M. The fate of platinum in Pt/Ba/CeO2 and Pt/Ba/Al2O3 catalysts during thermal aging. J. Catal. 2007, 251, 28–38. [Google Scholar] [CrossRef]
- Casapu, M.; Grunwaldt, J.D.; Maciejewski, M.; Baiker, A.; Hoyer, R.; Wittrock, M.; Eckhoff, S. Enhancement of activity and self-reactivation of NSR-catalysts by temporary formation of BaPtO3-perovskite. Catal. Lett. 2008, 120, 1–7. [Google Scholar] [CrossRef]
x | Sintering Conditions | Density, g/cm3 | Relative Density, % | Electrical Conductivity σ, S/cm | |
---|---|---|---|---|---|
450 °C | 800 °C | ||||
0 | 1350 °C, air | 6.84 | 96.8 | 109.7 | 83.7 |
1100 °C, air | 5.52 | 78.0 | 49.9 | 38.5 | |
0.2 | 1350 °C, air | 6.49 | 92.2 | 95.0 | 81.1 |
1200 °C, air | 5.02 | 71.2 | 46.5 | 37.7 | |
0.4 | 1350 °C, air | 6.53 | 93.4 | 126.8 | 122.0 |
1200 °C, air | 4.46 | 63.7 | 55.1 | 54.6 | |
0.5 | 1200 °C, air | 5.33 | 76.5 | 110.0 | 109.1 |
1200 °C, O2 | 4.78 | 68.6 | 79.8 | 80.2 |
Composition | T, °C | ( × 106) ± 0.1, K−1 |
---|---|---|
La2NiO4+δ | 30–1000 | 14.3 |
La1.8Ba0.2NiO4+δ | 30–1000 | 14.1 |
La1.6Ba0.4NiO4+δ | 30–1000 | 13.8 |
La1.5Ba0.5NiO4+δ | 30–1000 | 14.0 |
8YSZ, (ZrO2)0.92(Y2O3)0.08 | 30–1100 | 10.5 |
BZY15, BaZr0.85Y0.15O3−δ | 30–1100 | 8.5 |
Tested Pairs of Materials | XRD 1 | SEM/EDS 2 |
---|---|---|
La2−xBaxNiO4+δ + 8YSZ (x = 0.4, 0.5) | traces of La2Zr2O7 | – |
La2−xBaxNiO4±δ + BZY15 (x = 0.4, 0.5, 0.8) | no reactivity, traces of BaCO3 | – |
La1.2Ba0.8NiO4±δ + Pt | BaPtO3 3 | Ba-Ni-Pt-O phases at the surface |
La1.2Ba0.8NiO4±δ + Au | no reactivity | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharchuk, K.; Kovalevsky, A.; Yaremchenko, A. Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ Nickelates as Potential Electrocatalysts for Solid Oxide Cells. Materials 2023, 16, 1755. https://doi.org/10.3390/ma16041755
Zakharchuk K, Kovalevsky A, Yaremchenko A. Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ Nickelates as Potential Electrocatalysts for Solid Oxide Cells. Materials. 2023; 16(4):1755. https://doi.org/10.3390/ma16041755
Chicago/Turabian StyleZakharchuk, Kiryl, Andrei Kovalevsky, and Aleksey Yaremchenko. 2023. "Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ Nickelates as Potential Electrocatalysts for Solid Oxide Cells" Materials 16, no. 4: 1755. https://doi.org/10.3390/ma16041755
APA StyleZakharchuk, K., Kovalevsky, A., & Yaremchenko, A. (2023). Characterization of Ruddlesden-Popper La2−xBaxNiO4±δ Nickelates as Potential Electrocatalysts for Solid Oxide Cells. Materials, 16(4), 1755. https://doi.org/10.3390/ma16041755