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Abstract: Currently, extensive research activities are devoted to developing persistent phosphors
which extend beyond the visible range. In some emerging applications, long-lasting emission of
high-energy photons is required; however, suitable materials for the shortwave ultraviolet (UV–C)
band are extremely limited. This study reports a novel Sr2MgSi2O7 phosphor doped with Pr3+ ions,
which exhibits UV–C persistent luminescence with maximum intensity at 243 nm. The solubility
of Pr3+ in the matrix is analysed by X-ray diffraction (XRD) and optimal activator concentration is
determined. Optical and structural properties are characterised by photoluminescence (PL), thermally
stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) spectroscopy techniques.
The obtained results expand the class of UV–C persistent phosphors and provide novel insights into
the mechanisms of persistent luminescence.

Keywords: melilite; afterglow; UVC; long-lasting luminescence; thermostimulated luminescence (TSL);
electron spin resonance (ESR)

1. Introduction

Materials exhibiting persistent luminescence outside the visible light spectrum have
received considerable scientific attention [1–19]. Because of the constraints of human
perception, practical interest was initially limited to visible range persistent phosphors for
applications in safety signage, toys, and decorations [20–22]. However, the electromagnetic
spectrum extends far beyond our visual capabilities and many interesting phenomena
are related to infrared (IR) and ultraviolet (UV) spectral ranges. One of the better-known
aspects of IR radiation is its ability to penetrate living tissue [23]; therefore, non-invasive
bioimaging employing IR-emitting persistent phosphor nanoparticles is a promising and
rapidly advancing field of research [1–3]. On the other hand, the interaction of higher-
energy UV-radiation photons with matter can induce a variety of physical, chemical, and
biological effects such as photoionization, breakage of chemical bonds, and fluorescence, etc.
Consequently, the viability of UV-persistent phosphors for application in photodynamic
therapy, photocatalysis, and sterilization has been tested [4–9]. In addition, the aspect
of afterglow being invisible, both in IR and UV spectral ranges, is advantageous in itself
within several fields such as anticounterfeiting, optical tagging, surveillance, and night
vision [8–19]. Therefore, the development of novel materials with long-lasting luminescence
beyond the visible range is crucial to meet the needs of emerging applications.

The engineering of UV-emitting persistent phosphors involves the selection of an appro-
priate host compound and activator ion combination [8,9,24]. The UV spectrum commonly is
divided into three ranges: UV–A (315–400 nm), UV–B (280–315 nm), and UV–C (200–280 nm).
To enable radiative transitions in the required spectral range, the host matrix should possess a
sufficiently wide band gap and a crystal structure that can accommodate emission centres.
Suitable activators for UV persistent phosphors are currently limited to Ce3+ (UV–A) [25], Pr3+

(UV–B, UV–C) [5,7,10,15,18,19,26–28], Gd3+ (UV–B) [11,27], Tb3+ (UV–A) [29], Pb2+ (UV–A,
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UV–B) [30,31], and Bi3+ (UV–A, UV–B, UV–C) [4,6,12,14,17,27,32–42]. The final crucial aspect
of persistent phosphor design is related to point defects serving as trapping centres which
store excitation energy by capturing charge carriers. Important information regarding the
identity, depth, density, and distribution of the traps must be established to optimize the in-
tensity and duration of persistent luminescence. Targeted actions during sample synthesis
are often hindered by the lack or ambiguity of evidence regarding the nature of trapping
sites which could be partially resolved by combining luminescence spectroscopy with
magnetic resonance-based techniques in defect analysis. Because of the above-mentioned
considerations, the current knowledge base on UV–C persistent phosphors is quite limited.

An overview of the reported UV–C persistent phosphors is presented in Table 1. The
selection of complex oxides as hosts is motivated by their relatively simple preparation
process, high stability, and abundance of intrinsic defects that could serve as charge traps.
To achieve UV–C persistent luminescence, the choice of emission centres falls almost
exclusively to Pr3+. The excited 4f15d1 state of Pr3+ is lattice-sensitive; therefore, the parity
allowed in a 4f15d1→4f2 transition can be tuned over a sufficiently broad UV spectral
range [9]. To achieve persistent luminescence from 260 nm, broadly available excitation
sources such as 254 nm UV lamps can be used; however, efficient persistent luminescence
peaking at lower wavelengths typically requires the use of higher energy sources such
as X-rays.

Table 1. An overview of UV–C persistent phosphors.

Host Emission Centre Excitation Maximum of Persistent
Luminescence, nm Reference

Lu2SiO5 Pr3+ UV (254 nm) 270 [10,18]
Ca2Al2SiO7 Pr3+ UV (254 nm) 268 [10]

Ca3Al2Si3O12 Pr3+ UV (254 nm) 267 [10]
LiYSiO4 Pr3+ UV (254 nm) 267 [10]

(Ca1.5Y1.5)(Al3.5Si1.5)O12 Pr3+ UV (254 nm) 266 [15]
Sr3Y2Si6O18 Pr3+ UV (254 nm) 265 [10]

Li2CaGeO4 Pr3+ UV (254 nm)
X-rays 252 [7]

Cs2NaYF6 Pr3+ X-rays 250 [5]

Sr2MgSi2O7 Pr3+ X-rays
UV (232 nm) 243 This work

YPO4 Bi3+ X-rays 240 [37]
LaPO4 Pr3+ X-rays 231 [26]

Sr2MgSi2O7 is a promising material to be considered as a UV–C persistent phosphor.
Numerous studies have focused on the optical properties of Sr2MgSi2O7 systems doped
with rare earth (RE) ions [43–53]; moreover, Sr2MgSi2O7: Eu2+, Dy3+ is one of the most
efficient blue-emitting persistent phosphors [48–52]. Persistent luminescence is enabled by
appropriate lattice defects serving as trapping centres; therefore, the nature of defect types
in the host and the effect of RE ion substitution on their activation energies have been the
subjects of considerable scientific interest [48–52,54–57]. The sufficiently wide band gap
Eg = 7.1 eV of Sr2MgSi2O7 [56,57] is a crucial aspect enabling emission in the UV range.
UV photoluminescence has been achieved in Gd3+ [53] and Pb2+ [58] doped Sr2MgSi2O7;
however, there are no reports exploring the UV–C persistent luminescence capabilities of
the material.

This study reports a novel Sr2MgSi2O7: Pr3+ phosphor exhibiting UV–C persistent
luminescence after excitation with UV radiation or X-rays. The optimal activator con-
centration was determined for efficient persistent luminescence. Photoluminescence
(PL), thermally stimulated luminescence (TSL), and electron paramagnetic resonance
(EPR) techniques were applied to establish the mechanism of persistent luminescence in
the material.
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2. Materials and Methods

Single-phase tetragonal Sr2MgSi2O7 samples doped with 0–3% Pr3+ were prepared
using solid-state synthesis. Pr3+ was introduced in the host by replacing Sr2+ and the
general composition of the investigated material was Sr2-xPrxMgSi2O7 (x = 0–0.06). High-
purity SrCO3 (99.994%, Alfa Aesar, Thermo Fisher GmbH, Kandel, Germany), MgO (99.99%,
Alfa Aesar), SiO2 (99.995%, Alfa Aesar), and Pr6O11 (99.996%, Alfa Aesar) were used as
precursors. Appropriate amounts of precursors were thoroughly mixed in an agate mortar
and pressed into 13 mm pellets using a uniaxial hydraulic press from Specac. The pellets
were placed on a Pt foil and heat-treated at 1300 ◦C for 24 h using 5 ◦C/min heating and
cooling rates. The relatively long heat treatment was required to ensure the completion of
the solid-state reaction.

The crystal structure of the prepared samples was analyzed using X-ray diffraction
(XRD) (Rigaku MiniFlex 600, Rigaku, Tokyo, Japan) with a λ = 1.5406 Å Cu Kα radiation
source operating at 40 kV and 15 mA. The phase composition was calculated using Rietveld
refinement with Profex software (version 4.1.0) [59].

Photoluminescence (PL) emission and excitation spectra were measured using a spec-
trometer FLS1000 from Edinburgh Instruments (Livingston, UK) with a Xe lamp as an
excitation source. All luminescence and excitation spectra measurements were corrected
for the spectral sensitivity of the equipment.

Thermally stimulated luminescence (TSL) curves were measured using a Lexsyg
research fully-automated TL/OSL reader from Freiberg Instruments GmbH (Saxony, Ger-
many). As the irradiation source, an X-ray tube VF-50J/S (40 kV, 0.5 mA) was used. TSL
curves were recorded using a photomultiplier Hamamatsu R13456. The system was oper-
ated at a linear heating rate of 1 ◦C/s at a temperature range between room temperature
and 300 ◦C. The same system was used to measure isothermal afterglow decay kinetics at
25 ◦C and TSL spectra. For TSL spectra, the TL/OSL reader was coupled with an Andor
SR-303i-B spectrometer with a DV-420A-BU2 CCD camera. For UV (232 nm) excitation, a
Nd: YAG Q-switched laser NT342/3UV (pulse duration—4 ns) from Ekspla was used. A
UV 310 nm shortpass filter XUV0310 from Asahi Spectra was used to detect UV–C emission.

Electron paramagnetic resonance (EPR) investigations at X (9.363 GHz) and Q (33.92 GHz)
microwave frequency bands were performed on the Bruker ELEXSYS-II E500 CW-EPR
system (Bruker Biospin, Rheinstetten, Germany) equipped with an Oxford Instruments
liquid helium flow cryostat. X-band EPR spectra were detected at 80 K, 10 mW microwave
power, 0.1 mT magnetic field modulation amplitude, and 100 kHz modulation frequency.
For Q-band measurements, the following parameter values were used: 90 K, 0.26 mW,
0.4 mT, and 100 kHz. Prior to measurements, the sample was irradiated for 10 min at room
temperature using an X-ray tube operated at 50 kV, 10 mA. Afterwards, stepwise isochronal
(10 min at each step) annealing of the sample was carried out in a custom-built furnace with
an estimated temperature uncertainty of ±10 ◦C. EasySpin toolbox for MATLAB software
(version R2020a) [60] was used for EPR spectra simulations.

3. Results and Discussion

XRD analysis of Sr2MgSi2O7 samples doped with 0–3% Pr3+ is presented in Figure 1.
The XRD peak positions and relative intensities are consistent with the reference pattern of
tetragonal Sr2MgSi2O7 (PDF 01-079-8255 [61]). No additional peaks are detected for sam-
ples doped with up to 1% Pr3+ suggesting the incorporation of Pr3+ within the Sr2MgSi2O7
lattice. In the sample with the highest Pr3+ content, additional peaks associated with
Pr3+-rich hexagonal strontium silicate SrPr4(SiO4)3O (PDF 04-016-8403 [62]) can be detected
indicating that Pr3+ solubility in Sr2MgSi2O7 is limited. SrPr4(SiO4)3O content in the sample
was estimated to be 2% using Rietveld refinement.

Sr2MgSi2O7 possesses a melilite-type structure in which the host elements are dis-
tributed over six cationic and anionic sites. There are three distinct cationic positions:
Sr position with eight-fold, Mg with four-fold, and Si positions with four-fold coordina-
tion [61]. It is expected that Pr3+ predominantly incorporates within the Sr2+ sites because of
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similar ionic radii of Sr2+ (1.260 Å) and Pr3+ (1.126 Å [63]). Such substitution requires charge
compensation which is likely achieved by cation vacancies present in the material [54]. For
oxygen atoms, there are three types of anionic sites in the crystal [61]. First-principle
calculations have demonstrated that oxygen vacancies of any type are ideal electron
traps in the Sr2MgSi2O7 structure [55], thus encouraging the exploration of the material’s
optical properties.
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Figure 1. (a) XRD patterns of Sr2MgSi2O7 samples doped with 0–3% Pr3+; (b) Rietveld refinement
data of the 3.0% Pr3+ sample.

PL spectra of Sr2MgSi2O7 doped with 0.1–3.0% Pr3+ are shown in Figure 2. In PL
excitation spectra, a single band at a maximum of 232 nm is detected. This corresponds to
the interconfigurational 4f2→4f15d1 transition of Pr3+ which has been previously reported
in other silicates [18,64,65]. The excitation of this band results in intense UV–C luminescence
with the highest intensity of emission detected for the 0.5% Pr3+ sample (see inset of
Figure 2a). In samples with higher activator content, a gradual decline of emission intensity
is observed most likely because of concentration quenching. The dominant emission peaks
are located at 243, 253, 276, and 282 nm, which are associated with transitions from 4f15d1

to 3H4, 3H5, 3H6, and 3F2 states, respectively. The relative intensity of the 4f15d1→3H4
emission is slightly smaller at higher levels of Pr3+ content, presumably because of the
increased efficiency of reabsorption by the closely located 4f2→4f15d1 band. In addition,
radiative transitions from 3P0 and 1D2 can be detected in all samples; however, the efficiency
of these transitions is insignificant.
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Figure 2. (a) PL excitation spectra monitoring 243 nm emission (dashed lines) and PL spectra in the
UV range excited with 232 nm (solid lines); inset: integral UV-C emission intensity dependence on
Pr3+ content; (b) PL spectra in UV and visible ranges excited with 232 nm of Sr2MgSi2O7 doped with
0.1–3.0% Pr3+.
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For all samples, a strong afterglow signal is observed when irradiated by UV radiation
and X-rays. Persistent luminescence spectra after irradiation with X-rays are shown in
Figure 3a. The main spectral features coincide with the PL spectra (Figure 2); i.e., predom-
inantly UV–C luminescence bands originating from Pr3+ 4f15d1→4f2 optical transitions
were detected. In addition, a relatively weak luminescence band at around 320–400 nm
is detected in the persistent luminescence spectra. The comparison of spectral properties
of undoped and doped samples with various activators revealed that this band originates
from 5d1 → 2F5/2 and 2F7/2 transitions of Ce3+. Separation of adjacent lanthanides is
challenging because of small deviations in chemical properties [66]. As a result, Ce3+ is
a common impurity in Pr3+-containing precursors, including the Pr6O11 [67] used in the
present research. However, the contribution of Ce3+ emission in persistent luminescence
of Sr2MgSi2O7 is comparatively low. Figure 3b shows that UV–C persistent luminescence
is detectable for more than 16 h with the highest intensity of emission observed for the
0.7% Pr3+ sample. Surprisingly, persistent luminescence in the UV–C range could also
be induced by 232 nm laser radiation corresponding to the 4f2→4f15d1 transition of Pr3+

which suggests that Pr3+ could be photoionized during the excitation thus acting as an
electron donor. The corresponding spectrum and decay kinetics of the 0.7% Pr3+ sample are
presented in Figure 3c. The results show identical spectral features and highly comparable
decay behaviour to the X-ray-irradiated sample.
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Figure 3. (a) Persistent luminescence spectra and (b) UV-C emission decay kinetics of Sr2MgSi2O7

samples doped with 0.3–3.0% Pr3+ after irradiation for 3 min with X-rays at room temperature;
(c) persistent luminescence spectrum of the 0.7% Pr3+ sample irradiated for 10 min with 232 nm; inset:
UV-C persistent luminescence decay kinetics of the same sample.

TSL analysis of the Sr2MgSi2O7: Pr3+ samples after X-irradiation was performed to
characterize trap properties. TSL glow curves of the samples are shown in Figure 4a.
In general, individual TSL glow peaks represent the number of different types of traps;
the intensity and position of each peak correlate with the filled trap density and depth,
respectively [68]. The investigated samples may be characterized by a relatively large
number of traps with varying trap depth values. The traps can be tentatively divided
into shallow traps (glow peaks up to 125 ◦C) and deep traps (glow peaks above 125 ◦C),
with the deep traps being more prominent in all samples. The highest integral intensity
of shallow traps represented by the low-temperature glow peaks was detected for the
0.7% Pr3+ sample (inset of Figure 4b). As afterglow at room temperature is mainly caused
by the detrapping of shallow traps, the result is consistent with persistent luminescence
decay kinetics (Figure 3b).
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Figure 4. TSL glow curves of (a) full emission and (b) filtered UV-C emission of Sr2MgSi2O7 samples
doped with 0.1–3.0% Pr3+ after 30 s irradiation with X-rays; inset: integral TSL intensity depen-
dence on Pr3+ concentration; (c) wavelength-resolved TSL contour plot of Sr2MgSi2O7 doped with
0.7% Pr3+.

A wavelength-resolved TSL contour plot of the 0.7% Pr3+ sample shown in Figure 4c
yields intriguing results. The origin of TSL emission is strongly dependent on temperature.
If the heating temperature does not exceed 100 ◦C, TSL spectra match persistent lumines-
cence spectra with the dominant luminescence bands corresponding to Pr3+ UV–C emission.
When temperature exceeds 125 ◦C, UV–C emission is almost completely quenched, and
intense Ce3+-related emission emerges. Therefore, it can be concluded that Pr3+-related
UV–C persistent luminescence is linked to the detrapping of the shallow traps. These
results correlate with the persistent luminescence spectra shown in Figure 3a and the TSL
glow curves presented in Figure 4b where UV–C emission is predominant.

For a more thorough analysis of trap properties, the partial thermal cleaning
(Tmax–Tstop) experiment, together with initial rise analysis (IRA), were performed for
the 0.7% Pr3+ sample. In Figure 5a, each TSL glow curve has been measured after preheat-
ing the irradiated sample to different temperatures (Tstop), and subsequently cooling it
to room temperature. Developed by McKeever in 1980 [69], the Tmax–Tstop analysis is a
widely acknowledged experimental method for determining the nature of traps. Constant
Tstop-independent glow peak maximum temperatures (Tmax) are expected for discrete
trapping sites. Obviously, this is not the case for the investigated sample, where a grad-
ual shift of Tmax to higher values with the increase of Tstop is observed. Such behaviour
strongly indicates that the activation energies of traps in Sr2MgSi2O7 are continuously
distributed [70,71].

To determine trap depth values Ea, all glow curves were analyzed by applying IRA.
This method assumes that the initial low-temperature side of the TSL peak will follow the
Arrhenius equation [72]:

I(T) = C· exp
(
− Ea

kBT

)
(1)

where I(T)—intensity as a function of temperature; C—a constant that includes a frequency
factor (assumed to be independent of temperature); and T—temperature. According to
Equation (1), the initial rise part of the glow peak is represented by a straight line with a
slope of −Ea if ln(I) is plotted as a function of 1

kBT . Analysis of selected glow curves is
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shown in Figure 5b with linear fits indicated by the blue dashed lines. The obtained trap
depth values cover the energy region between 0.68–0.95 eV.
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Figure 5. (a) TSL glow curves of the 0.7% Pr3+ sample measured after preheating to Tstop from
26 to 150 ◦C; (b) IRA of selected data obtained from the Tmax–Tstop experiment; (c) the calculated trap
density distribution.

Additionally, the method described in ref. [73] was used to estimate the density
distribution of filled traps. It is based on a calculation of the difference between integrated
intensities of two consecutive TSL glow curves from the Tmax–Tstop experiment. The
integrated intensity is directly related to the total number of filled traps; therefore, the
difference in integrated intensities between two glow peaks from the Tmax–Tstop experiment
will correspond to the number of traps emptied with an increased Tstop value. As seen in
Figure 5c, the shallow traps may be characterized by at least three types of trapping levels,
where each type can be characterized by a quasi-continuous distribution.

Analogous analysis was carried out for the deep traps, for which a quasi-continuous
distribution of trapping levels exists as well. The calculated trap depth values were
determined to lie between 1.25–1.45 eV, whereas maximum trap densities were observed
at 196, 278, and 376 ◦C. These results, however, do not provide insight into the origin of
trapping sites; therefore, additional spectroscopic measurements were performed.

The response of Sr2MgSi2O7: Pr3+ to optical stimulation was tested by analysing
TSL glow curves after bleaching with either 458, 590, or 850 nm light-emitting diodes. A
minor diminishing effect on TSL intensity was observed with the bleaching effect being
more pronounced for 458 nm light. Additional experiments performed along the lines
described in refs. [74,75] should be considered to characterize the effects of photostimulation
in the material.

EPR spectroscopy was applied to characterize radiation-induced centre formation and
stability in Sr2MgSi2O7; the results of EPR analysis are summarized in Figure 6. Figure 6a
demonstrates that “EPR-active” centres (electron spin S 6= 0) are generated after irradiation
of the sample with X-rays. Resonance signals are observed in 325–350 mT range, which for
the experimental X-band microwave frequency corresponds to g-factor values of 2.06–1.91.
Their relative intensities suggest that the experimental spectrum is composed of several
overlapping signals. To verify this assumption, EPR spectra were recorded after annealing
the sample at different temperatures (Figure 6b). EPR signals annihilate in several stages,
providing experimental evidence for the presence of at least three paramagnetic centres
which are labelled “Centre I-III” in the order of ascending stability.
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Figure 6. EPR analysis of the 0.7% Pr3+ sample: (a) experimental spectra before and after irradiation
with X-rays; (b) spectra evolution with sample annealing temperature; simulations of individual
signals contributing to EPR spectra detected at (c) X and (d) Q microwave frequency bands.

Simulations of the EPR data recorded at two microwave frequencies were performed
to determine spin–Hamiltonian (SH) parameters of the individual signals (Figure 6c,d).
A multifrequency approach in EPR analysis is particularly useful to ensure a precise and
unambiguous analysis of highly anisotropic signals [76]. The following SH was used in
the simulations:

H = gµBBS + SAI (2)

In Equation (2), g is the g-factor; µB—the Bohr magneton; B—external magnetic
field; S—electron spin operator; A—the hyperfine (HF) coupling tensor; I—nuclear spin
operator [77,78]. All paramagnetic centres were identified as S = 1/2 systems; for Centre
I, weak HF interaction with Mg nuclei (10% abundant 25Mg isotope with I = 5/2) was
partially resolved. A summary of the fitted SH parameter values is provided in Table 2.

Table 2. SH parameters of X-ray-induced paramagnetic centres in Sr2MgSi2O7: 0.7% Pr3+.
∆g i = 0.0005; ∆A i = 0.5 MHz.

g1 g2 g3 A1,MHz A2,MHz A3,MHz

Centre I 2.0516 2.0120 2.0017 6.6 6.4
Centre II 1.9803 1.9619 1.9111
Centre III 2.0132 2.0068 2.0028
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The nature of X-radiation-induced paramagnetic centres can be discussed on the basis
of simulation results. In oxide hosts, trapped electron centres are typically characterized
by g < ge = 2.0023, whereas trapped-hole centres exhibit g > ge [79–81]. The determined
SH parameter values of Centre I imply that it is a single trapped hole in the vicinity of a
Mg nucleus. Oxygen ions are common hole traps in oxides resulting in the formation of
S = 1/2 O− ions [82–84]. Of the three unique oxygen sites in the Sr2MgSi2O7 structure, only
one is coordinated by a single Mg ion (O3 in ref. [61]). Moreover, the Mg–O distance and the
magnitude of HF coupling are comparable to that of similar centres in MgO [84]. Therefore,
it can be proposed that trapped holes at the O3 site give rise to the EPR signal of Centre
I. Not much can be inferred about the other EPR signals without discernible spectra-HF
structure. The determined g values suggest that Centre II is most likely comprised of single
electrons trapped at vacant oxygen sites and that Centre III could be another trapped-hole
centre variation.

All centres are relatively stable at 50–100 ◦C; however, at higher temperatures, each
paramagnetic centre exhibits distinct thermal properties (Figure 7). Annihilation of Centre
I occurs rapidly at 100–150 ◦C, while Centre II anneals more gradually at 100–250 ◦C.
The asynchronous decay of trapped holes (Centre I) and electrons (Centre II) suggests
that several recombination pathways exist for the X-ray induced paramagnetic centres.
Centre III signal evolution with annealing temperature could imply that, besides thermally
stimulated recombination, re-trapping processes of charge carriers also occur in the material.
However, large uncertainties due to the spectral overlap with the dominant Centre I signal
inhibit definitive conclusions.
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Figure 7. Annealing kinetics of the individual EPR signals.

Several points can be made regarding the mechanism of persistent luminescence in
Sr2MgSi2O7: Pr3+. The band gap of the material is 7.1 eV [56,57] (175 nm); therefore, the
location of the 4f15d1 emitting state of Pr3+ could be expected to be close to the conduction
band. Excitation of this band results in persistent luminescence (Figure 3c) which suggests
that Pr3+ can be partly photoionized and could act as a charge trap centre (electron donor).
UV–C persistent luminescence of Pr3+ results from the recombination of shallow charge
traps with activation energies within a 0.68–0.95 eV range (Figure 5). Only a slight correla-
tion between the low-temperature TSL data and paramagnetic trapped-hole centre stability
is observed (Centre I in Figure 7), suggesting that UV–C persistent luminescence is mainly
related to the gradual liberation of non-paramagnetic defects such as F centres with two
trapped electrons. Besides Pr3+ UV–C emission, TSL emission from trace impurity Ce3+

ions is present at higher temperatures (Figure 3c). It is associated with thermally assisted re-
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combination of relatively stable defects which could be related to the paramagnetic defects
identified in Figure 6. However, these defects are stable at room temperature (Figure 7)
and do not contribute to the persistent luminescence of Sr2MgSi2O7: Pr3+. As a result,
persistent luminescence can be tuned by temperature (Figure 4c), which is a promising
aspect for anticounterfeiting applications.

4. Conclusions

A novel Sr2MgSi2O7 phosphor doped with Pr3+ ions exhibiting UV–C persistent
luminescence with an emission maximum of 243 nm has been successfully developed.
It was determined that 0.7% was the optimal dopant content for achieving the highest
intensity of UV–C persistent luminescence. The persistent luminescence is detected after
excitation with both UV radiation and X-rays which is promising for practical applications.

UV–C persistent luminescence of Sr2MgSi2O7: Pr3+ results from recombination pro-
cesses of shallow traps with activation energies within a 0.68–0.95 eV range. Excitation
radiation generates three spin S = 1/2 centres which can be associated with singly trapped-
hole and electron centres in the material. However, the relatively high stability of the
detected paramagnetic centres implies that UV–C persistent luminescence is caused by
other defects.
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