Surface-Dependent Hydrogen Evolution Activity of Copper Foil
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Annealing Rolled Copper Foil into the (200) Exposed Cooper Foil
3.2. Characterizations of Copper Foils
3.3. HER Performance of Copper Foils with Different Exposed Surfaces
3.4. DFT Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Norskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Liao, T.; Wei, Z.; Sun, J.; Guo, J.; Sun, Z. Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy. Small Methods 2021, 5, 2000988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guan, J. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Bligaard, T.; Logadottir, A.; Kitchin, J.R.; Chen, J.G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Tran, P.D.; Chen, Y.; Loo, J.S.C.; Barber, J.; Xu, Z.J. Achieving high electrocatalytic efficiency on copper: A low-cost alternative to platinum for hydrogen generation in water. ACS Catal. 2015, 5, 4115–4120. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Farinazzo Bergamo Dias Martins, P.; Papa Lopes, P.; Ticianelli, E.A.; Stamenkovic, V.R.; Markovic, N.M.; Strmcnik, D. Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity. Electrochem. Commun. 2019, 100, 30–33. [Google Scholar] [CrossRef]
- Raoof, J.-B.; Ojani, R.; Kiani, A.; Rashid-Nadimi, S. Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction. Int. J. Hydrogen Energy 2010, 35, 452–458. [Google Scholar] [CrossRef]
- Liu, B.; Peng, H.Q.; Cheng, J.; Zhang, K.; Chen, D.; Shen, D.; Wu, S.; Jiao, T.; Kong, X.; Gao, Q.; et al. Nitrogen-doped graphene-encapsulated nickel-copper alloy nanoflower for highly efficient electrochemical hydrogen evolution reaction. Small 2019, 15, e1901545. [Google Scholar] [CrossRef]
- Xu, F.; Yu, C.; Qian, G.; Luo, L.; Hasan, S.W.; Yin, S.; Tsiakaras, P. Electrocatalytic production of hydrogen over highly efficient ultrathin carbon encapsulated S, P co-existence copper nanorods composite. Renew. Energy 2020, 151, 1278–1285. [Google Scholar] [CrossRef]
- Jahan, M.; Liu, Z.; Loh, K.P. A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [Google Scholar] [CrossRef]
- Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689. [Google Scholar] [CrossRef]
- Cao, D.; Lu, G.-Q.; Wieckowski, A.; Wasileski, S.A.; Neurock, M. Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach. J. Phys. Chem. B 2005, 109, 11622–11633. [Google Scholar] [CrossRef]
- Wu, Z.; Ma, Y.; Zhang, Y.; Xu, L.; Chen, B.; Yuan, Q.; Huang, W. Adsorption and surface reaction of NO2 on a stepped Au(997) surface: Enhanced reactivity of low-coordinated Au atoms. J. Phys. Chem. C 2012, 116, 3608–3617. [Google Scholar] [CrossRef]
- Xiong, F.; Yu, Y.Y.; Wu, Z.; Sun, G.; Ding, L.; Jin, Y.; Gong, X.Q.; Huang, W. Methanol conversion into dimethyl ether on the anatase TiO2(001) surface. Angew. Chem. Int. Ed. 2016, 55, 623–628. [Google Scholar] [CrossRef]
- Arán-Ais, R.M.; Scholten, F.; Kunze, S.; Rizo, R.; Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(i) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 2020, 5, 317–325. [Google Scholar] [CrossRef]
- Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z.L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735. [Google Scholar] [CrossRef]
- Habas, S.E.; Lee, H.; Radmilovic, V.; Somorjai, G.A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697. [Google Scholar] [CrossRef]
- Liao, H.G.; Jiang, Y.X.; Zhou, Z.Y.; Chen, S.P.; Sun, S.G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed. 2008, 47, 9100–9103. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.W.; Chanda, K.; Lin, P.H.; Wang, Y.N.; Liao, C.W.; Huang, M.H. Fabrication of Au-Pd core-shell heterostructures with systematic shape evolution using octahedral nanocrystal cores and their catalytic activity. J. Am. Chem. Soc. 2011, 133, 19993–20000. [Google Scholar] [CrossRef]
- Kuzume, A.; Herrero, E.; Feliu, J.M. Oxygen reduction on stepped platinum surfaces in acidic media. J. Electroanal. Chem. 2007, 599, 333–343. [Google Scholar] [CrossRef]
- Hoshi, N.; Noma, M.; Suzuki, T.; Hori, Y. Structural effect on the rate of CO2 reduction on single crystal electrodes of palladium. J. Electroanal. Chem. 1997, 421, 15–18. [Google Scholar] [CrossRef]
- Schouten, K.J.P.; Gallent, E.P.; Koper, M.T.M. The electrochemical characterization of copper single-crystal electrodes in alkaline media. J. Electroanal. Chem. 2013, 699, 6–9. [Google Scholar] [CrossRef]
- Ji, L.P.; Feng, Y.; Cheng, C.Q.; Li, Z.; Guan, W.; He, B.; Liu, Z.; Mao, J.; Zheng, S.J.; Dong, C.K.; et al. Epitaxial growth of high-energy copper facets for promoting hydrogen evolution reaction. Small 2022, 18, e2107481. [Google Scholar] [CrossRef]
- Li, J.; Chen, M.; Samad, A.; Dong, H.; Ray, A.; Zhang, J.; Jiang, X.; Schwingenschlogl, U.; Domke, J.; Chen, C.; et al. Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater. 2022, 21, 740–747. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Z.; Xu, X.; Zhang, Z.; Duan, Y.; Dong, J.; Qiao, R.; You, S.; Wang, L.; Qi, J.; et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 2020, 581, 406–410. [Google Scholar] [CrossRef]
- Jin, S.; Huang, M.; Kwon, Y.; Zhang, L.; Li, B.-W.; Oh, S.; Dong, J.; Luo, D.; Biswal, M.; Cunning, B.V.; et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 2018, 362, 1021–1025. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.; Lochocki, E.B.; Avila, J.; Kim, C.J.; Ogawa, Y.; Havener, R.W.; Kim, D.K.; Monkman, E.J.; Shai, D.E.; Wei, H.I.; et al. Polycrystalline graphene with single crystalline electronic structure. Nano Lett. 2014, 14, 5706–5711. [Google Scholar] [CrossRef]
- Sharma, K.P.; Shinde, S.M.; Rosmi, M.S.; Sharma, S.; Kalita, G.; Tanemura, M. Effect of copper foil annealing process on large graphene domain growth by solid source-based chemical vapor deposition. J. Mater. Sci. 2016, 51, 7220–7228. [Google Scholar] [CrossRef]
- Hu, J.; Xu, J.; Zhao, Y.; Shi, L.; Li, Q.; Liu, F.; Ullah, Z.; Li, W.; Guo, Y.; Liu, L. Roles of oxygen and hydrogen in crystal orientation transition of copper foils for high-quality graphene growth. Sci. Rep. 2017, 7, 45358. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Nitopi, S.; Wong, A.B.; Snider, J.L.; Nielander, A.C.; Morales-Guio, C.G.; Orazov, M.; Higgins, D.C.; Hahn, C.; Jaramillo, T.F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2019, 2, 702–708. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.-J.; Hu, X.-Z.; Chen, C.-Q.; Kulinich, S.A.; Du, X.-W. Surface-Dependent Hydrogen Evolution Activity of Copper Foil. Materials 2023, 16, 1777. https://doi.org/10.3390/ma16051777
Kong L-J, Hu X-Z, Chen C-Q, Kulinich SA, Du X-W. Surface-Dependent Hydrogen Evolution Activity of Copper Foil. Materials. 2023; 16(5):1777. https://doi.org/10.3390/ma16051777
Chicago/Turabian StyleKong, Ling-Jie, Xin-Zhuo Hu, Chuan-Qi Chen, Sergei A. Kulinich, and Xi-Wen Du. 2023. "Surface-Dependent Hydrogen Evolution Activity of Copper Foil" Materials 16, no. 5: 1777. https://doi.org/10.3390/ma16051777
APA StyleKong, L. -J., Hu, X. -Z., Chen, C. -Q., Kulinich, S. A., & Du, X. -W. (2023). Surface-Dependent Hydrogen Evolution Activity of Copper Foil. Materials, 16(5), 1777. https://doi.org/10.3390/ma16051777