Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing
Abstract
:1. Introduction
1.1. Development of Superconducting Wires
1.2. Development and Application of the Hot Isostatic Pressing Process
2. HIP Process in Superconducting Wires and Tapes
2.1. HIP Process in Superconducting BiSrCaCuO Wires and Tapes
2.2. HIP Process in MgB2 Superconducting Wires
2.3. HIP Process in Iron-Based Superconducting Wires and Tapes
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larbalestier, D.; Gurevich, A.; Feldmann, D.M.; Polyanskii, A. High-Tc superconducting materials for electric power applications. Nature 2001, 414, 368–377. [Google Scholar] [CrossRef]
- Dou, S.X.; Liu, H.K. Ag-Sheathed Bi(Pb)SrCaCuO Superconducting Tapes. Supercond. Sci. Technol. 1993, 6, 297–314. [Google Scholar] [CrossRef]
- Sen, S.; Chen, I.G.; Chen, C.H.; Stefanescu, D.M. Fabrication of Stable Superconductive Wires with YBa2Cu3Ox/Ag2O Composite Core. Appl. Phys. Lett. 1989, 54, 766–768. [Google Scholar] [CrossRef]
- Glowacki, B.A.; Majoros, M.; Vickers, M.; Evetts, J.E.; Shi, Y.; McDougall, I. Superconductivity of powder-in-tube MgB2 wires. Supercond. Sci. Technol. 2001, 14, 193–199. [Google Scholar] [CrossRef]
- Atkinson, H.V.; Davies, S. Fundamental aspects of hot isostatic pressing: An overview. Metall. Mater. Trans. A 2000, 31, 2981–3000. [Google Scholar] [CrossRef]
- Qiu, C.L.; Adkins, N.J.E.; Attallah, M.M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti6Al4V. Mater. Sci. Eng. 2013, 578, 230–239. [Google Scholar] [CrossRef]
- Ekstrom, T.; Nygren, M. SiAlON Ceramics. J. Am. Ceram. Soc. 1992, 75, 259–276. [Google Scholar] [CrossRef]
- Sadananda, K.; Singh, A.K.; Iman, M.A.; Osofsky, M.; Letourneau, V.; Richards, L.E. Effect of Hot Isostatic Pressing on RBa2Cu3O7 Superconductors. Adv. Ceram. Mater. 1988, 3, 524–526. [Google Scholar] [CrossRef]
- Nash, A.S.; Nash, P.; Shi, H.; Poeppel, R.B.; Goretta, K.C. Hot Isostatically Pressed Bi-Sr-Ca-Cu-O. Supercond. Sci. Technol. 1990, 3, 556–559. [Google Scholar] [CrossRef]
- Chu, C.Y.; Routbort, J.L.; Chen, N.; Biondo, A.C.; Kupperman, D.S.; Goretta, K.C. Mechanical-Properties and Texture of Dense Polycrystalline Bi2Sr2CaCu2Ox. Supercond. Sci. Technol. 1992, 5, 306–312. [Google Scholar] [CrossRef]
- Hellstrom, E.E.; Yuan, Y.; Jiang, J.; Cai, X.Y.; Larbalestier, D.C.; Huang, Y. Review of overpressure processing Ag-sheathed (Bi, Pb)2Sr2Ca2Cu3Ox wire. Supercond. Sci. Technol. 2005, 18, S325–S331. [Google Scholar] [CrossRef]
- Seeber, B.; Cheggour, N.; Perenboom, J.A.A.J.; Grill, R. Critical-Current Distribution of Hot Isostatically Pressed PbMo6S8 Wires. Phys. C 1994, 234, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Willis, T.C.; Jablonski, P.D.; Larbalestier, D.C.; Evenboudjada, S.; Chevrel, R.; Sergent, M. Hot Isostatic Pressing of Chevrel-Phase Bulk and Hydrostatically Extruded Wire Samples. IEEE Trans. Appl. Supercond. 1995, 5, 1209–1213. [Google Scholar] [CrossRef] [Green Version]
- Maeda, H.; Tanaka, Y.; Fukutomi, M.; Asano, T. A New High-Tc Oxide Superconductor without a Rare-Earth Element. Jpn. J. Appl. Phys. 1988, 27, L209–L210. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; SkovHansen, P.; Freltoft, T. The mechanical deformation of superconducting BiSrCaCuO/Ag composites. Supercond. Sci. Technol. 1997, 10, 371–387. [Google Scholar] [CrossRef]
- Kametani, F.; Shen, T.; Jiang, J.; Scheuerlein, C.; Malagoli, A.; Di Michiel, M.; Huang, Y.; Miao, H.; Parrell, J.A.; Hellstrom, E.E.; et al. Bubble formation within filaments of melt-processed Bi2212 wires and its strongly negative effect on the critical current density. Supercond. Sci. Technol. 2011, 24, 075009. [Google Scholar] [CrossRef] [Green Version]
- Rikel, M.O.; Williams, R.K.; Cai, X.Y.; Polyanskii, A.A.; Jiang, J.; Wesolowski, D.; Hellstrom, E.E.; Larbalestier, D.C.; DeMoranville, K.; Riley, G.N. Overpressure processing Bi2223/Ag tapes. IEEE Trans. Appl. Supercond. 2001, 11, 3026–3029. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kato, T.; Yamazaki, K.; Ohkura, K.; Fujino, K.; Fujikami, J.; Ueno, E.; Ayai, N.; Kiklichi, M.; Hayashi, K.; et al. Controlled over pressure processing of Bi2223 long length wires. IEEE Trans. Appl. Supercond. 2005, 15, 2534–2537. [Google Scholar] [CrossRef]
- Kobayashi, S.; Yamazaki, K.; Kato, T.; Ohkura, K.; Ueno, E.; Fujino, K.; Fujikami, J.; Ayal, N.; Kikuchi, M.; Hayashi, K.; et al. Controlled over-pressure sintering process of Bi2223 wires. Phys. C 2005, 426, 1132–1137. [Google Scholar] [CrossRef]
- Yamade, S.; Ayai, N.; Fujikami, J.; Kobayashi, S.; Ueno, E.; Yamazaki, K.; Kikuchi, M.; Kato, T.; Hayashi, K.; Sato, K.; et al. Development of high performance with over 200 A critical DI-BSCCO wire current. Phys. C 2007, 463, 821–824. [Google Scholar] [CrossRef]
- Naito, T.; Fujishiro, H.; Yamada, Y. Thermal Conductivity and Dilatation of Bi-2223/Ag (DI-BSCCO) Superconducting Wire Laminated With Various Thin Alloy Tapes. IEEE Trans. Appl. Supercond. 2018, 28, 6400404. [Google Scholar] [CrossRef]
- Tajima, R.; Shimoyama, J.; Yamamoto, A.; Ogino, H.; Kishio, K.; Nakashima, T.; Kobayashi, S.; Hayashi, K. Synthesis of Bi2223 by Low PO2 Sintering. IEEE Trans. Appl. Supercond. 2013, 23, 6400604. [Google Scholar] [CrossRef]
- Reeves, J.L.; Polak, M.; Zhang, W.; Hellstrom, E.E.; Babcock, S.E.; Larbalestier, D.C.; Inoue, N.; Okada, M. Overpressure processing of Ag-sheathed Bi-2212 tapes. IEEE Trans. Appl. Supercond. 1997, 7, 1541–1543. [Google Scholar] [CrossRef] [Green Version]
- Reeves, J.L.; Hellstrom, E.E.; Irizarry, V.; Lehndorff, B. Effects of overpressure processing on porosity in Ag-sheathed Bi-2212 multifilamentary tapes with various geometries. IEEE Trans. Appl. Supercond. 1999, 9, 1836–1839. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Starch, W.L.; Hannion, M.; Kametani, F.; Trociewitz, U.P.; Hellstrom, E.E.; Larbalestier, D.C. Doubled critical current density in Bi-2212 round wires by reduction of the residual bubble density. Supercond. Sci. Technol. 2011, 24, 082001. [Google Scholar] [CrossRef]
- Larbalestier, D.C.; Jiang, J.; Trociewitz, U.P.; Kametani, F.; Scheuerlein, C.; Dalban-Canassy, M.; Matras, M.; Chen, P.; Craig, N.C.; Lee, P.J.; et al. Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T. Nat. Mater. 2014, 13, 375–381. [Google Scholar] [CrossRef]
- Miao, H.; Marken, K.R.; Meinesz, M.; Czabaj, B.; Hong, S. Development of Bi-2212 conductors for magnet applications. AIP Conf. Proc. 2004, 711, 603–611. [Google Scholar]
- Miao, H.; Huang, Y.; Hong, S.; Gerace, M.; Parrell, J. Bi-2212 round wire development for high field applications. J. Phys. Conf. Ser. 2014, 507, 022020. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.Y.; Bradford, G.; Hossain, S.I.; Brown, M.D.; Cooper, J.; Miller, E.; Huang, Y.B.; Miao, H.P.; Parrell, J.A.; White, M.; et al. High-Performance Bi-2212 Round Wires Made With Recent Powders. IEEE Trans. Appl. Supercond. 2019, 29, 6400405. [Google Scholar] [CrossRef]
- Shen, T.M.; Li, P.; Ye, L.Y. Heat treatment control of Bi-2212 coils: I. Unravelling the complex dependence of the critical current density of Bi-2212 wires on heat treatment. Cryogenics 2018, 89, 95–101. [Google Scholar] [CrossRef]
- Jiang, J.Y.; Hossain, S.I.; Oloye, T.A.; Oz, Y.; Barua, S.; Cooper, J.; Miller, E.; Huang, Y.B.; Parrell, J.A.; Kametani, F.; et al. Effects of Wire Diameter and Filament Size on the Processing Window of Bi-2212 Round Wire. IEEE Trans. Appl. Supercond. 2021, 31, 3055475. [Google Scholar] [CrossRef]
- Shen, T.M.; Bosque, E.; Davis, D.; Jiang, J.Y.; White, M.; Zhang, K.; Higley, H.; Turqueti, M.; Huang, Y.B.; Miao, H.P.; et al. Stable, predictable and training-free operation of superconducting Bi-2212 Rutherford cable racetrack coils at the wire current density of 1000 A/mm2. Sci. Rep. 2019, 9, 10170. [Google Scholar] [CrossRef] [Green Version]
- Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y.; Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 2001, 410, 63–64. [Google Scholar] [CrossRef]
- Takano, Y.; Takeya, H.; Fujii, H.; Kumakura, H.; Hatano, T.; Togano, K.; Kito, H.; Ihara, H. Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering. Appl. Phys. Lett. 2001, 78, 2914–2916. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, V.Z.; Prikhna, T.A.; Kozyrev, A.V. Phase diagram of the Mg-B system at 2GPa and peculiarities of high-pressure manufacture of MgB2-based blocks with high critical currents. High Press. Res. 2009, 29, 87–92. [Google Scholar] [CrossRef]
- Serquis, A.; Civale, L.; Hammon, D.L.; Liao, X.Z.; Coulter, J.Y.; Zhu, Y.T.; Jaime, M.; Peterson, D.E.; Mueller, F.M.; Nesterenko, V.F.; et al. Hot isostatic pressing of powder in tube MgB2 wires. Appl. Phys. Lett. 2003, 82, 2847–2849. [Google Scholar] [CrossRef] [Green Version]
- Serquis, A.; Civale, L.; Hammon, D.L.; Coulter, J.Y.; Liao, X.Z.; Zhu, Y.T.; Peterson, D.E.; Mueller, F.M. Microstructure and high critical current of powder-in-tube MgB2. Appl. Phys. Lett. 2003, 82, 1754–1756. [Google Scholar] [CrossRef] [Green Version]
- Shields, T.C.; Kawano, K.; Holdom, D.; Abell, J.S. Microstructure and superconducting properties of hot isostatically pressed MgB2. Supercond. Sci. Technol. 2002, 15, 202–205. [Google Scholar] [CrossRef] [Green Version]
- Liao, X.Z.; Serquis, A.; Zhu, Y.T.; Civale, L.; Hammon, D.L.; Peterson, D.E.; Mueller, F.M.; Nesterenko, V.F.; Gu, Y. Defect structures in MgB2 wires introduced by hot isostatic pressing. Supercond. Sci. Technol. 2003, 16, 799–803. [Google Scholar] [CrossRef] [Green Version]
- Gajda, D.; Morawski, A.; Zaleski, A.; Kurnatowska, M.; Cetner, T.; Gajda, G.; Presz, A.; Rindfleisch, M.; Tomsic, M. The influence of HIP on the homogeneity, Jc, Birr, Tc and Fp in MgB2 wires. Supercond. Sci. Technol. 2015, 28, 015002. [Google Scholar] [CrossRef]
- Gajda, D.; Morawski, A.; Zaleski, A.J.; Akdogan, M.; Yetis, H.; Karaboga, F.; Cetner, T.; Belenli, I. The influence of HIP process on critical parameters of MgB2/Fe wires with big boron grains and without barriers. J. Alloys Compd. 2016, 687, 616–622. [Google Scholar] [CrossRef]
- Jie, H.; Qiu, W.B.; Billah, M.; Mustapic, M.; Patel, D.; Ma, Z.Q.; Gajda, D.; Morawski, A.; Cetner, T.; Shahabuddin, M.; et al. Superior transport J(c) obtained in in-situ MgB2 wires by tailoring the starting materials and using a combined cold high pressure densification and hot isostatic pressure treatment. Scr. Mater. 2017, 129, 79–83. [Google Scholar] [CrossRef]
- Gajda, D.; Morawski, A.; Zaleski, A.J.; Cetner, T.; Hassler, W.; Nenkov, K.; Malecka, M.; Rindfleisch, M.A.; Tomsic, M. Significant enhancement of the critical current of MgB2 wires through a reduction of the diameter using HIP method. Scr. Mater. 2018, 143, 77–80. [Google Scholar] [CrossRef]
- Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature 2008, 453, 376–378. [Google Scholar] [CrossRef]
- Gao, Z.S.; Wang, L.; Qi, Y.P.; Wang, D.L.; Zhang, X.P.; Ma, Y.W. Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method. Supercond. Sci. Technol. 2008, 21, 105024. [Google Scholar] [CrossRef]
- Gao, Z.S.; Wang, L.; Qi, Y.P.; Wang, D.L.; Zhang, X.P.; Ma, Y.W.; Yang, H.; Wen, H.H. Superconducting properties of granular SmFeAsO1−xFx wires with Tc = 52 K prepared by the powder-in-tube method. Supercond. Sci. Technol. 2008, 21, 112001. [Google Scholar] [CrossRef] [Green Version]
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296. [Google Scholar] [CrossRef]
- Chen, X.H.; Dai, P.C.; Feng, D.L.; Xiang, T.; Zhang, F.C. Iron-based high transition temperature superconductors. Natl. Sci. Rev. 2014, 1, 371–395. [Google Scholar] [CrossRef]
- Yao, C.; Ma, Y.W. Recent breakthrough development in iron-based superconducting wires for practical applications. Supercond. Sci. Technol. 2019, 32, 023002. [Google Scholar] [CrossRef]
- Weiss, J.D.; Tarantini, C.; Jiang, J.; Kametani, F.; Polyanskii, A.A.; Larbalestier, D.C.; Hellstrom, E.E. High intergrain critical current density in fine-grain (Ba0.6K0.4)Fe2As2 wires and bulks. Nat. Mater. 2012, 11, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Weiss, J.D.; Jiang, J.; Polyanskii, A.A.; Hellstrom, E.E. Mechanochemical synthesis of pnictide compounds and superconducting Ba0.6K0.4Fe2As2 bulks with high critical current density. Supercond. Sci. Technol. 2013, 26, 074003. [Google Scholar] [CrossRef] [Green Version]
- Pyon, S.; Tsuchiya, Y.; Inoue, H.; Kajitani, H.; Koizumi, N.; Awaji, S.; Watanabe, K.; Tamegai, T. Enhancement of critical current densities by high-pressure sintering in (Sr,K) Fe2As2 PIT wires. Supercond. Sci. Technol. 2014, 27, 095002. [Google Scholar] [CrossRef]
- Pyon, S.; Suwa, T.; Park, A.; Kajitani, H.; Koizumi, N.; Tsuchiya, Y.; Awaji, S.; Watanabe, K.; Tamegai, T. Enhancement of critical current densities in (Ba, K)Fe2As2 wires and tapes using HIP technique. Supercond. Sci. Technol. 2016, 29, 115002. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.F.; Lin, K.L.; Yao, C.; Zhang, X.P.; Dong, C.H.; Wang, D.L.; Awaji, S.; Kumakura, H.; Ma, Y.W. Transport current density at temperatures up to 25 K of Cu/Ag composite sheathed 122-type tapes and wires. Supercond. Sci. Technol. 2017, 30, 115007. [Google Scholar] [CrossRef]
- Liu, S.F.; Cheng, Z.; Yao, C.; Dong, C.H.; Wang, D.L.; Huang, H.; Li, L.; Xu, G.X.; Zhu, Y.C.; Liu, F.; et al. High critical current density in Cu/Ag composited sheathed Ba0.6K0.4Fe2As2 tapes prepared via hot isostatic pressing. Supercond. Sci. Technol. 2019, 32, 044007. [Google Scholar] [CrossRef]
- Liu, S.F. Preparation and Properties of Ba1−xKxFe2As2 Wires and Tapes Based on Hot Isostatic Pressing Technique. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2021. [Google Scholar]
- Pyon, S.; Miyawaki, D.; Tamegai, T.; Awaji, S.; Kito, H.; Ishida, S.; Yoshida, Y. Enhancement of critical current density in (Ba,Na)Fe2As2 round wires using high-pressure sintering. Supercond. Sci. Technol. 2020, 33, 065001. [Google Scholar] [CrossRef]
- Guo, W.W.; Yao, C.; Huang, H.; Dong, C.H.; Liu, S.F.; Wang, C.D.; Ma, Y.W. Enhancement of transport Jc in (Ba, K)Fe2As2 HIP processed round wires. Supercond. Sci. Technol. 2021, 34, 094001. [Google Scholar] [CrossRef]
- Liu, S.F.; Yao, C.; Huang, H.; Dong, C.H.; Guo, W.W.; Cheng, Z.; Zhu, Y.C.; Awaji, S.; Ma, Y.W. High-performance Ba1−xKxFe2As2 superconducting tapes with grain texture engineered via a scalable fabrication. Sci. China Mater. 2021, 64, 2530–2540. [Google Scholar] [CrossRef]
- Pyon, S.; Mori, H.; Tamegai, T.; Awaji, S.; Kito, H.; Ishida, S.; Yoshida, Y.; Kajitani, H.; Koizumi, N. Fabrication of small superconducting coils using (Ba,A)Fe2As2 (A: Na, K) round wires with large critical current densities. Supercond. Sci. Technol. 2021, 34, 105008. [Google Scholar] [CrossRef]
- Liu, S.F.; Yao, C.; Huang, H.; Dong, C.H.; Guo, W.W.; Cheng, Z.; Zhu, Y.C.; Awaji, S.; Ma, Y.W. Enhancing Transport Performance in 7-filamentary Ba0.6K0.4Fe2As2 Wires and Tapes via Hot Isostatic Pressing. Phys. C 2021, 585, 1353870. [Google Scholar] [CrossRef]
- Pyon, S.; Miyawaki, D.; Veshchunov, I.; Tamegai, T.; Takano, K.; Kajitani, H.; Koizumi, N.; Awaji, S. Fabrication and characterization of CaKFe4As4 round wires sintered at high pressure. Appl. Phys. Express 2018, 11, 123101. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, S.F.; Dong, C.H.; Huang, H.; Li, L.; Zhu, Y.C.; Awaji, S.; Ma, Y.W. Effects of core density and impurities on the critical current density of CaKFe4As4 superconducting tapes. Supercond. Sci. Technol. 2019, 32, 105014. [Google Scholar] [CrossRef]
- Miyawaki, D.; Pyon, S.; Tamegai, T.; Awaji, S.; Takano, K.; Kajitani, H.; Koizumi, N. Fabrication of (Ba,Na)Fe2As2 round wires using HIP process. J. Phys. Conf. Ser. 2019, 1293, 012043. [Google Scholar] [CrossRef]
- Plots Comparisons of Superconductor Critical Current Densities. Available online: https://nationalmaglab.org/magnet-development/applied-superconductivity-center/plots (accessed on 10 February 2023).
Author | Shape | Length | Section Size | Ptotal (Mpa) | pO2 (Mpa) | Tmax (°C) | Time | Ic (77 K, 0 T) (A) |
---|---|---|---|---|---|---|---|---|
Rikel (2001) [17] | 85-filament tape | 3–4 cm | - | 17.5 | 0.012~0.005 | 815 | 36 h | 100 |
Kobayashi (2005) [18] | multi filament tape | 1500 m | 4.5 × 0.24 mm | 30 | 0.02~0.004 | - | - | 100 |
Tajima (2013) [22] | 121-filament tape | - | 4.2 × 0.22 mm | 10 | 0.003 | 820 | 24 h | 124 |
Author | Shape | Length | Section Size | Ptotal (MPa) | pO2 (MPa) | Tmax (°C) | Jc (kA/cm2) | Je (kA/cm2) |
---|---|---|---|---|---|---|---|---|
Reeves (1997) [23] | tape | 4–8 cm | 0.14 mm thick | 0.81 | 0.1 | 895 | 270 (4.2 K, 0 T) | - |
Larbalestier (2014) [26] | 18 × 37 wire | 30 m | 0.8 mm | 10 | 0.1 | - | - | 100 (4.2 K, 5 T) |
Miao (2014) [28] | 85 × 18 wire | 1.2 m | 1.2 mm | 1 | 0.1 | - | - | 55 (4.2 K, 15 T) |
Jiang (2019) [29] | 55 × 18 wire | 400 m | 0.8 mm | 5 | 0.1 | 884~894 | 664 (4.2 K, 15 T) | 132 (4.2 K, 15 T) |
Shen (2019) [32] | 55 × 18 wire | 140 m | 0.8 mm | 5 | 0.1 | - | - | 136.5 (4.2 K, 15 T) |
Jiang (2021) [31] | 85 × 18 wire | 9 cm | 0.8–1.2 mm | 5 | 0.1 | 885~890 | 100 (4.2 K, 5 T) | - |
Author | Shape | Section Size | P (GPa) | T (°C) | Time | Jc (4.2 K, 0 T) (kA/cm2) | Je (4.2 K, 0 T) (kA/cm2) |
---|---|---|---|---|---|---|---|
Gajda (2015) [40] | 18-filament wire | 0.83 mm | 1 | 700 | 15 min | ~100 | - |
Gajda (2016) [41] | wire | 0.9 mm | 1.1 | 740 | 40 min | ~40 | - |
Jie (2017) [42] | wire | 0.83 mm | 1.4 | 700 | 20 min | - | 80 |
Gajda (2018) [43] | 18-filament wire | 0.79 mm | 1.1 | 570 | 210 min | - | 38 |
Author | Type | Shape | Section Size | P (GPa) | T (°C) | Time | Jc (4.2 K, 0 T) (kA/cm2) | Je (4.2 K, 0 T) (kA/cm2) |
---|---|---|---|---|---|---|---|---|
Weiss (2012) [50] | (Ba,K)Fe2As2 | wire | 1.35 mm | 192 | 600 | 10 h | 120 | 10 |
Pyon (2014) [52] | (Sr,K)Fe2As2 | wire | 1.2 mm | 120 | 700 | 4 h | 100 | 9.4 |
Pyon (2016) [53] | (Ba,K)Fe2As2 | wire | 1.2 mm | 175 | 700 | 4 h | 175 | 20 |
Pyon (2016) [53] | (Ba,K)Fe2As2 | tape | 0.4 mm thick | 175 | 700 | 4 h | 254 | 23 |
Liu (2017) [54] | (Ba,K)Fe2As2 | wire | 1.5 mm | 200 | 700 | 4 h | 76 | 9.4 |
Pyon (2018) [59] | CaKFe4As4 | wire | 1.2 mm | 175 | 700 | 4 h | 96 | 7.6 |
Liu (2019) [55] | (Ba,K)Fe2As2 | tape | 0.3 mm thick | 200 | 740 | 1 h | 190 | 58 |
Miyawaki (2019) [64] | (Ba,Na)Fe2As2 | wire | 1.2 mm | 175 | 700 | 4 h | 76 | 24 |
Cheng (2019) [63] | CaKFe4As4 | tape | 0.4 mm thick | 150 | 600 | 1 h | 210 | 22 |
Pyon (2020) [57] | (Ba,Na)Fe2As2 | wire | 1.2 mm | 175 | 700 | 4 h | 204 | 40 |
Guo (2021) [58] | (Ba,K)Fe2As2 | wire | 1.5 mm | 150 | 700 | 4 h | 200 | 47 |
Pyon (2021) [60] | (Ba,Na)Fe2As2 | wire | 1 mm | 200 | 700 | 4 h | - | 54 |
Liu (2021) [61] | (Ba,K)Fe2As2 | 7-filament wire | 1.5 mm | 150 | 740 | 2 h | - | 13 |
Liu (2021) [61] | (Ba,K)Fe2As2 | 7-filament tape | 0.3 mm thick | 150 | 740 | 1 h | - | 48 |
Liu (2021) [59] | (Ba,K)Fe2As2 | tape | 0.3 mm thick | 150 | 740 | 1 h | 114 (10 T) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Z.; Yao, C.; Guo, W.; Wang, D.; Ma, Y. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing. Materials 2023, 16, 1786. https://doi.org/10.3390/ma16051786
Lei Z, Yao C, Guo W, Wang D, Ma Y. Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing. Materials. 2023; 16(5):1786. https://doi.org/10.3390/ma16051786
Chicago/Turabian StyleLei, Zhenyu, Chao Yao, Wenwen Guo, Dongliang Wang, and Yanwei Ma. 2023. "Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing" Materials 16, no. 5: 1786. https://doi.org/10.3390/ma16051786
APA StyleLei, Z., Yao, C., Guo, W., Wang, D., & Ma, Y. (2023). Progress on the Fabrication of Superconducting Wires and Tapes via Hot Isostatic Pressing. Materials, 16(5), 1786. https://doi.org/10.3390/ma16051786