An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys
Abstract
:1. Introduction
2. Microstructural Stability during Thermal Exposure
2.1. γ/γ’ Microstructure Evolution
2.2. γ’ Coarsening Mechanisms
2.3. Precipitation Behavior of TCP Phases
2.4. Influencing Factors on Microstructural Stability
2.4.1. Temperature and Time
2.4.2. Lattice Misfit and Interfacial Energy
2.4.3. Role of the Alloying Elements
3. Effect of Thermal Exposure on Mechanical Properties
3.1. High-Temperature Tensile Strength and Room-Temperature Hardness
3.2. Creep Property
3.3. Influencing Factors on the Degradation of Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, R.C. The Superalloys: Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Sharghi-Moshtaghin, R.; Asgari, S. The Influence of Thermal Exposure on the Γ′ Precipitates Characteristics and Tensile Behavior of Superalloy IN-738LC. J. Mater. Process. Technol. 2004, 147, 343–350. [Google Scholar] [CrossRef]
- Liu, J.L.; Jin, T.; Yu, J.J.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Effect of Thermal Exposure on Stress Rupture Properties of a Re Bearing Ni Base Single Crystal Superalloy. Mater. Sci. Eng. A 2010, 527, 890–897. [Google Scholar] [CrossRef]
- Antonov, S. Synchrotron In-Situ Aging Study and Correlations to the Γ′ Phase Instabilities in a High-Refractory Content γ-Γ′ Ni-Base Superalloy. Metall. Mater. Trans. A 2018, 49, 3885–3895. [Google Scholar] [CrossRef]
- Pollock, T.M.; Tin, S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. J. Propuls. Power 2006, 22, 361–374. [Google Scholar] [CrossRef]
- Horst, O.M.; Adler, D.; Git, P.; Wang, H.; Streitberger, J.; Holtkamp, M.; Jöns, N.; Singer, R.F.; Körner, C.; Eggeler, G. Exploring the Fundamentals of Ni-Based Superalloy Single Crystal (SX) Alloy Design: Chemical Composition vs. Microstructure. Mater. Des. 2020, 195, 108976. [Google Scholar] [CrossRef]
- Murakumo, T.; Kobayashi, T.; Koizumi, Y.; Harada, H. Creep Behaviour of Ni-Base Single-Crystal Superalloys with Various Γ′ Volume Fraction. Acta Mater. 2004, 52, 3737–3744. [Google Scholar] [CrossRef]
- Nathal, M.V. Effect of Initial Gamma Prime Size on the Elevated Temperature Creep Properties of Single Crystal Nickel Base Superalloys. Metall. Trans. A 1987, 18, 1961–1970. [Google Scholar] [CrossRef]
- Ardell, A.J. Effect of Volume Fraction on Particle Coarsening—Theoretical Considerations. Acta Metall. 1972, 20, 61–71. [Google Scholar] [CrossRef]
- Davies, C.K.L.; Nash, P.; Stevens, R.N. The Effect of Volume Fraction of Precipitate on Ostwald Ripening. Acta Metall. 1980, 28, 179–189. [Google Scholar] [CrossRef]
- Long, H.; Mao, S.; Liu, Y.; Zhang, Z.; Han, X. Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys—A Review. J. Alloys Compd. 2018, 743, 203–220. [Google Scholar] [CrossRef]
- Yu, H.; Xu, W.; van der Zwaag, S. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys. Metall. Mater. Trans. A 2018, 49, 406–416. [Google Scholar] [CrossRef] [Green Version]
- Reed, R.C.; Tao, T.; Warnken, N. Alloys-By-Design: Application to Nickel-Based Single Crystal Superalloys. Acta Mater. 2009, 57, 5898–5913. [Google Scholar] [CrossRef]
- Hou, J.S.; Guo, J.T. Influence of Thermal Exposure on the Microstructures and Mechanical Properties of a Superalloy. J. Mater. Eng. Perform. 2006, 15, 67–75. [Google Scholar] [CrossRef]
- Kang, M.; Sridar, S.; Xiong, W.; Wang, J.; Yu, J.; Sun, B. Influence of Long-Term Aging on Microstructural Stability and Performance of DD6 Superalloy. Mater. Sci. Technol. 2021, 37, 607–615. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, L.; Wang, X.; Du, Y.; Ye, L.; Hou, G.; Yang, Y.; Liu, J.; Liu, J.; Li, J.; et al. Evolution of TCP Phase During Long Term Thermal Exposure in Several Re-Containing Single Crystal Superalloys. Acta Metall. Sin. Engl. Lett. 2020, 33, 731–740. [Google Scholar] [CrossRef]
- Cheng, K.; Jo, C.; Kim, D.; Jin, T.; Hu, Z. Unexpected Precipitation of a Re-Rich Phase in Single Crystal Superalloy CMSX-4 during Thermal Exposure. J. Metall. 2012, 2012, 308568. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Galilea, I.; Koßmann, J.; Kostka, A.; Drautz, R.; Mujica Roncery, L.; Hammerschmidt, T.; Huth, S.; Theisen, W. The Thermal Stability of Topologically Close-Packed Phases in the Single-Crystal Ni-Base Superalloy ERBO/1. J. Mater. Sci. 2016, 51, 2653–2664. [Google Scholar] [CrossRef]
- Wilson, A.S. Formation and Effect of Topologically Close-Packed Phases in Nickel-Base Superalloys. Mater. Sci. Technol. 2017, 33, 1108–1118. [Google Scholar] [CrossRef]
- Shi, Z.; Li, J.; Liu, S. Effect of Long Term Aging on Microstructure and Stress Rupture Properties of a Nickel Based Single Crystal Superalloy. Prog. Nat. Sci. Mater. Int. 2012, 22, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Zrnik, J.; Strunz, P.; Vrchovinsky, V.; Muransky, O.; Novy, Z.; Wiedenmann, A. Degradation of Creep Properties in a Long-Term Thermally Exposed Nickel Base Superalloy. Mater. Sci. Eng. A 2004, 387–389, 728–733. [Google Scholar] [CrossRef]
- Kuehmann, C.J.; Voorhees, P.W. Ostwald Ripening in Ternary Alloys. Metall. Mater. Trans. A 1996, 27, 937–943. [Google Scholar] [CrossRef]
- Lifshitz, I.M.; Slyozov, V.V. The Kinetics of Precipitation from Supersaturated Solid Solutions. J. Phys. Chem. Solids 1961, 19, 35–50. [Google Scholar] [CrossRef]
- Baldan, A. Review Progress in Ostwald Ripening Theories and Their Applications to Nickel-Base Superalloys. J. Mater. Sci. 2002, 37, 2171–2202. [Google Scholar] [CrossRef]
- Lapin, J.; Gebura, M.; Pelachová, T.; Nazmy, M. Coarsening Kinetics of Cuboidal γ’ Precipitates in Single Crystal Nickel Base Superalloy CMSX-4. Kov. Mater 2008, 46, 313–322. [Google Scholar]
- Wagner, C. Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Z. Für Elektrochem. Berichte Bunsenges. Für Phys. Chem. 1961, 65, 581–591. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, Y.; Zhang, J.; Tang, D.; Li, C.; Zhao, Z. Influence of Thermal Exposure on Microstructure and Stress Rupture Properties of a New Re-Containing Single Crystal Ni-Based Superalloy. China Foundry 2018, 15, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Chellman, D.J.; Ardell, A.J. The Coarsening of γ’ Precipitates at Large Volume Fractions. Acta Metall. 1974, 22, 577–588. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Jo, C.Y.; Kim, D.H.; Jin, T.; Hu, Z.Q. Influence of Local Chemical Segregation on the Γ′ Directional Coarsening Behavior in Single Crystal Superalloy CMSX-4. Mater. Charact. 2009, 60, 210–218. [Google Scholar] [CrossRef]
- Milhet, X.; Arnoux, M.; Cormier, J.; Mendez, J.; Tromas, C. On the Influence of the Dendritic Structure on the Creep Behavior of a Re-Containing Superalloy at High Temperature/Low Stress. Mater. Sci. Eng. A 2012, 546, 139–145. [Google Scholar] [CrossRef]
- Matan, N.; Cox, D.C.; Rae, C.M.F.; Reed, R.C. On the Kinetics of Rafting in CMSX-4 Superalloy Single Crystals. Acta Mater. 1999, 47, 2031–2045. [Google Scholar] [CrossRef]
- Huang, M.; Yang, X.; Liu, W.; Li, J.; Yang, S.; Qin, Y. Precipitation Characteristics of a Nickel-Based Single-Crystal Superalloy after Long-Term Thermal Exposure. Int. J. Mater. Res. 2018, 109, 811–818. [Google Scholar] [CrossRef]
- Liu, L.R.; Jin, T.; Zhao, N.R.; Wang, Z.H.; Sun, X.F.; Guan, H.R.; Hu, Z.Q. Microstructural Evolution of a Single Crystal Nickel-Base Superalloy during Thermal Exposure. Mater. Lett. 2003, 57, 4540–4546. [Google Scholar] [CrossRef]
- Jin, H.P.; Li, J.R.; Liu, S.Z. Stress Rupture Properties of the Second Generation Single Crystal Superalloy DD6 after High Temperature Exposure. Mater. Sci. Forum 2007, 546–549, 1249–1252. [Google Scholar] [CrossRef]
- Epishin, A.; Link, T.; Ckner, U.B.; Portella, P.D. Kinetics of the Topological Inversion of the γ/Γ′-Microstructure during Creep of a Nickel-Based Superalloy. Acta Mater. 2001, 49, 4017–4023. [Google Scholar] [CrossRef]
- Goerler, J.V.; Lopez-Galilea, I.; Mujica Roncery, L.; Shchyglo, O.; Theisen, W.; Steinbach, I. Topological Phase Inversion after Long-Term Thermal Exposure of Nickel-Base Superalloys: Experiment and Phase-Field Simulation. Acta Mater. 2017, 124, 151–158. [Google Scholar] [CrossRef]
- Fuchs, G.E. Solution Heat Treatment Response of a Third Generation Single Crystal Ni-Base Superalloy. Mater. Sci. Eng. A 2001, 300, 52–60. [Google Scholar] [CrossRef]
- Masoumi, F.; Jahazi, M.; Shahriari, D.; Cormier, J. Coarsening and Dissolution of Γ′ Precipitates during Solution Treatment of AD730TM Ni-Based Superalloy: Mechanisms and Kinetics Models. J. Alloys Compd. 2016, 658, 981–995. [Google Scholar] [CrossRef]
- Davies, C.K.L.; Nash, P.; Stevens, N. Precipitation in Ni-Co-Al Alloys. J. Mater. Sci. 1980, 15, 1521–1532. [Google Scholar] [CrossRef]
- Brailsford, A.D.; Wynblatt, P. The Dependence of Ostwald Ripening Kinetics on Particle Volume Fraction. Acta Metall. 1979, 27, 489–497. [Google Scholar] [CrossRef]
- Philippe, T.; Voorhees, P.W. Ostwald Ripening in Multicomponent Alloys. Acta Mater. 2013, 61, 4237–4244. [Google Scholar] [CrossRef]
- Ardell, A.J.; Ozolins, V. Trans-Interface Diffusion-Controlled Coarsening. Nat. Mater. 2005, 4, 309–316. [Google Scholar] [CrossRef]
- Tiley, J.; Viswanathan, G.B.; Srinivasan, R.; Banerjee, R.; Dimiduk, D.M.; Fraser, H.L. Coarsening Kinetics of Γ′ Precipitates in the Commercial Nickel Base Superalloy René 88 DT. Acta Mater. 2009, 57, 2538–2549. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Huang, T.; Chen, J.; Cao, K.; Liu, X.; Zhang, J.; Fu, H. Coarsening Kinetics of Γ′ Precipitates in a Re-Containing Ni-Based Single Crystal Superalloy during Long-Term Aging. J. Mater. Sci. Technol. 2021, 62, 1–10. [Google Scholar] [CrossRef]
- Lu, F.; Antonov, S.; Lu, S.; Zhang, J.; Li, L.; Wang, D.; Zhang, J.; Feng, Q. Unveiling the Re Effect on Long-Term Coarsening Behaviors of Γ′ Precipitates in Ni-Based Single Crystal Superalloys. Acta Mater. 2022, 233, 117979. [Google Scholar] [CrossRef]
- Sun, W. Kinetics for Coarsening Co-Controlled by Diffusion and a Reversible Interface Reaction. Acta Mater. 2007, 55, 313–320. [Google Scholar] [CrossRef]
- Huo, J.; Shi, Q.; Zheng, Y.; Feng, Q. Microstructural Characteristics of σ Phase and P Phase in Ru-Containing Single Crystal Superalloys. Mater. Charact. 2017, 124, 73–82. [Google Scholar] [CrossRef]
- Huo, J.J.; Shi, Q.Y.; Zheng, Y.R.; Feng, Q. Microstructural Nature and Stability of Co-Rich TCP Phases in Ru-Containing Single Crystal Superalloys. J. Alloys Compd. 2017, 715, 460–470. [Google Scholar] [CrossRef]
- Rae, C.M.F.; Reed, R.C. The Precipitation of Topologically Close-Packed Phases in Rhenium-Containing Superalloys. Acta Mater. 2001, 49, 4113–4125. [Google Scholar] [CrossRef]
- Peng, Z.; Povstugar, I.; Matuszewski, K.; Rettig, R.; Singer, R.; Kostka, A.; Choi, P.-P.; Raabe, D. Effects of Ru on Elemental Partitioning and Precipitation of Topologically Close-Packed Phases in Ni-Based Superalloys. Scr. Mater. 2015, 101, 44–47. [Google Scholar] [CrossRef]
- Pistor, J.; Körner, C. Formation of Topologically Closed Packed Phases within CMSX-4 Single Crystals Produced by Additive Manufacturing. Mater. Lett. X 2019, 1, 100003. [Google Scholar] [CrossRef]
- Matuszewski, K.; Müller, A.; Ritter, N.; Rettig, R.; Kurzydłowski, K.J.; Singer, R.F. On the Thermodynamics and Kinetics of TCP Phase Precipitation in Re- and Ru- Containing Ni-Base Superalloys: On the Thermodynamics and Kinetics of TCP Phase. Adv. Eng. Mater. 2015, 17, 1127–1133. [Google Scholar] [CrossRef]
- Lapin, J.; Gebura, M.; Pelachová, T.; Bajana, O. Microstructure Degradation of Nickel Base Single Crystal Superalloy CMSX-4; TANGER Ltd.: Hradec nad Moravicí, Czech Republic, 2009; pp. 304–310. [Google Scholar]
- Matuszewski, K.; Rettig, R.; Matysiak, H.; Peng, Z.; Povstugar, I.; Choi, P.; Müller, J.; Raabe, D.; Spiecker, E.; Kurzydłowski, K.J.; et al. Effect of Ruthenium on the Precipitation of Topologically Close Packed Phases in Ni-Based Superalloys of 3rd and 4th Generation. Acta Mater. 2015, 95, 274–283. [Google Scholar] [CrossRef]
- Calderon, H.A.; Voorhees, P.W.; Murray, J.L.; Kostorz, G. Ostwald Ripening in Concentrated Alloys. Acta Metall. Mater. 1994, 42, 991–1000. [Google Scholar] [CrossRef]
- Ardell, A.J. Gradient Energy, Interfacial Energy and Interface Width. Scr. Mater. 2012, 66, 423–426. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, T.; Lu, F.; Cao, K.; Wang, D.; Zhang, J.; Zhang, J.; Su, H.; Liu, L. The Effect of Rhenium on the Microstructure Stability and γ/Γ′ Interfacial Characteristics of Ni-Based Single Crystal Superalloys during Long-Term Aging. J. Alloys Compd. 2021, 876, 160114. [Google Scholar] [CrossRef]
- Zhuang, X.; Antonov, S.; Li, L.; Feng, Q. Effect of Alloying Elements on the Coarsening Rate of Γʹ Precipitates in Multi-Component CoNi-Based Superalloys with High Cr Content. Scr. Mater. 2021, 202, 114004. [Google Scholar] [CrossRef]
- Liang, S.X.; Liu, K.Y.; Zhou, Y.X.; Yin, L.X.; Shi, Y.D.; Zheng, L.Y.; Xing, Z.G. Interfacial Energy between γ/γ′ Phases of Ni–Al Alloys Extracted by Using a New Method. Mater. Chem. Phys. 2022, 277, 125538. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Huang, T.; Su, H.; Li, Z.; Liu, L.; Fu, H. Influence of W, Re, Cr, and Mo on Microstructural Stability of the Third Generation Ni-Based Single Crystal Superalloys. J. Mater. Res. 2016, 31, 3381–3389. [Google Scholar] [CrossRef]
- Lapin, J.; Pelachová, T.; Bajana, O. The Effect of Microstructure on Mechanical Properties of Single Crystal CMSX-4 Superalloy; TANGER Ltd.: Brno, Czech Republic, 2013; pp. 922–926. [Google Scholar]
- Cheng, K.; Jo, C.; Jin, T.; Hu, Z. Precipitation Behavior of μ Phase and Creep Rupture in Single Crystal Superalloy CMSX-4. J. Alloys Compd. 2011, 509, 7078–7086. [Google Scholar] [CrossRef]
- Sun, J.; Liu, J.; Li, J.; Wang, X.; Liu, J.; Yang, Y.; Zhou, Y.; Sun, X. Microstructural Degradation after Thermal Exposure of a Re-Containing Single Crystal Superalloy. Mater. Charact. 2021, 178, 111279. [Google Scholar] [CrossRef]
- Zhang, Z.; Yue, Z. TCP Phases Growth and Crack Initiation and Propagation in Nickel-Based Single Crystal Superalloys Containing Re. J. Alloys Compd. 2018, 746, 84–92. [Google Scholar] [CrossRef]
- Xia, W.; Zhao, X.; Yue, L.; Yue, Q.; Wang, J.; Ding, Q.; Bei, H.; Zhang, Z. Inconsistent Creep between Dendrite Core and Interdendritic Region under Different Degrees of Elemental Inhomogeneity in Nickel-Based Single Crystal Superalloys. J. Mater. Sci. Technol. 2021, 92, 88–97. [Google Scholar] [CrossRef]
- An, W.; Utada, S.; Guo, X.; Antonov, S.; Zheng, W.; Cormier, J.; Feng, Q. Thermal Cycling Creep Properties of a Directionally Solidified Superalloy DZ125. J. Mater. Sci. Technol. 2022, 104, 269–284. [Google Scholar] [CrossRef]
- He, S.; Zhao, Y.; Lu, F.; Zhang, J.; Li, L.; Feng, Q. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States. Acta Metall. Sin. 2020, 56, 1195–1205. [Google Scholar]
- Tan, X.P.; Liu, J.L.; Jin, T.; Hu, Z.Q.; Hong, H.U.; Choi, B.G.; Kim, I.S.; Jo, C.Y. Effect of Ruthenium on High-Temperature Creep Rupture Life of a Single Crystal Nickel-Based Superalloy. Mater. Sci. Eng. A 2011, 528, 8381–8388. [Google Scholar] [CrossRef]
- Nathal, M.V.; MacKAY, R.A.; Miner, R.V. Influence of Precipitate Morphology on Intermediate Temperature Creep Properties of a Nickel-Base Superalloy Single Crystal. Metall. Trans. A 1989, 20, 133–141. [Google Scholar] [CrossRef]
- Tetzlaff, U.; Mughrabi, H. Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression. In Proceedings of the Superalloys 2000, 9th International Symposium, TMS, Seven Springs, PA, USA, 17–21 September 2000; pp. 273–282. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Lu, F.; Li, L. An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys. Materials 2023, 16, 1787. https://doi.org/10.3390/ma16051787
Zhang J, Lu F, Li L. An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys. Materials. 2023; 16(5):1787. https://doi.org/10.3390/ma16051787
Chicago/Turabian StyleZhang, Jian, Fan Lu, and Longfei Li. 2023. "An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys" Materials 16, no. 5: 1787. https://doi.org/10.3390/ma16051787
APA StyleZhang, J., Lu, F., & Li, L. (2023). An Overview of Thermal Exposure on Microstructural Degradation and Mechanical Properties in Ni-Based Single Crystal Superalloys. Materials, 16(5), 1787. https://doi.org/10.3390/ma16051787