Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Method of Obtaining Sorbents
2.3. Sampling Methodology
2.4. Determination of Hydrological Parameters
2.5. Determination of the Concentration of Various Forms of Phosphorus
2.6. Sorption Concentration 32P and 33P
2.7. Determination of the Specific Activity of 32P and 33P by Alpha-Beta Spectrometry with Radiochemical Preparation
→ (NH4)3[PMo12O40]∙2H2O + 21NH4NO3 + 2KNO3 + 10H2O.
→ (NH4)3[PMo12O40]∙2H2O + 21NH4NO3 + 10H2O
2.8. Calculation of Quantitative Characteristics of Phosphorus Biodynamics
3. Results and Discussion
3.1. Assessing the Performance of Sorbents
3.2. Methodology for Recovery of 32P and 33P from Seawater
- Seawater (1000 L) is collected into a tank on board the ship and then filtered through a polypropylene filter with a 0.5 µm pore size. Large sample volumes are necessary because of low activity values of 32P and 33P in seawater of 1 to 5 dpm/m3 [11,23] and short half-lives of 14.27 and 25.35 days, respectively [6].
- To evaluate the efficacy of the recovery process, a sample of potassium dihydro orthophosphate is added to the sampled seawater at a concentration of 1 µmol/L of phosphorus and left for 5–6 h to equalize the phosphorus concentration throughout the vessel.
- Fe–H sorbent (200 mL, depending on the volume of seawater) is loaded onto the column.
- Prepared seawater (1000 L) is passed through the sorbent-filled column at a rate of 1 to 4 CV/min.
- To assess the recovery effectiveness of stable phosphorus, a sample of the passed seawater is taken periodically (every 10 to 50 L).
- After sorption, the sorbent is dried in a desiccator at 70–80 °C.
- 32P and 33P activity is determined by alpha-beta spectrometry method with radiochemical preparation according to the procedure described above.
3.3. Seasonal Variability of Phosphorus Biodynamics in the Balaklava Coastal Area
3.3.1. Concentrations of Different Forms of Phosphorus and Isotopes 32P and 33P
3.3.2. Parameters of Phosphorus Biodynamics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savenko, V.S.; Savenko, A.V. Geochemistry of Phosphorus in the Global Hydrological Cycle; GEOS Publishers: Moscow, Russia, 2007; 248p. (In Russian) [Google Scholar]
- Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 1999, 400, 525–531. [Google Scholar] [CrossRef]
- Lal, D. An overview of five decades of studies of cosmic ray produced nuclides in oceans. Sci. Total Environ. 1999, 237–238, 3–13. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 2000, 51, 109–135. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. The Global Phosphorus Cycle. In Treatise on Geochemistry, 2nd ed.; Schlesinger, W.H., Ed.; Elsevier: Amsterdam, Boston, 2003; pp. 499–558. [Google Scholar]
- Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A.H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 2003, 729, 3–128. [Google Scholar] [CrossRef] [Green Version]
- Van Mooy, B.A.S.; Krupke, A.; Dyhrman, S.T.; Fredricks, H.F.; Frischkorn, K.R.; Ossolinski, J.E.; Repeta, D.J.; Rouco, M.; Seewald, J.D.; Sylva, S.P. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 2015, 348, 783–785. [Google Scholar] [CrossRef] [Green Version]
- Benitez-Nelson, C. The missing link in oceanic phosphorus cycling? Science 2015, 348, 759–760. [Google Scholar] [CrossRef]
- Marquez, L.; Costa, N.L. The formation of 32P from atmospheric argon by cosmic rays. Nuovo. Cimento. 1955, 2, 1038–1041. [Google Scholar] [CrossRef]
- Lal, D.; Narasappaya, N.; Zutshi, P.K. Phosphorus isotopes P32 and P33 in rain water. Nucl. Phys. 1957, 3, 69–75. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O. Measurement of cosmogenic 32P and 33P activities in rainwater and seawater. Anal. Chem. 1998, 70, 64–72. [Google Scholar] [CrossRef]
- Lal, D.; Chung, Y.; Platt, T.; Lee, T. Twin cosmogenic radiotracer studies of phosphorus recycling and chemical fluxes in the upper ocean. Limnol. Oceanogr. 1988, 33, 1559–1567. [Google Scholar] [CrossRef]
- Lal, D.; Lee, T. Cosmogenic 32P and 33P used as tracers to study phosphorus recycling in the upper ocean. Nature 1988, 333, 752–754. [Google Scholar] [CrossRef]
- Lee, T.; Barg, E.; Lal, D. Studies of vertical mixing in the Southern California Bight with cosmogenic radionuclides 32P and 7Be. Limnol. Oceanogr. 1991, 36, 1044–1052. [Google Scholar] [CrossRef]
- Lee, T.; Lal, D. Techniques for extraction of dissolved inorganic and organic phosphorus from large volumes of sea water. Anal. Chim. Acta 1992, 260, 113–121. [Google Scholar] [CrossRef]
- Waser, N.A.; Fleer, A.P.; Hammar, T.R.; Buesseler, K.O.; Bacon, M.P. Determination of natural 32P and 33P in rainwater, marine particles and plankton by low-level beta counting. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1994, 338, 560–567. [Google Scholar] [CrossRef]
- Waser, N.A.D.; Bacon, M.P. Cosmic ray produced 32P and 33P in Cl, S and K at mountain altitude and calculation of oceanic production rates. Geophys. Res. Lett. 1994, 21, 991–994. [Google Scholar] [CrossRef]
- Waser, N.A.D.; Bacon, M.P. Wet deposition fluxes of cosmogenic 32P and 33P and variations in the 33P/32P ratios at Bermuda. Earth Planet. Sci. Lett. 1995, 133, 71–80. [Google Scholar] [CrossRef]
- Waser, N.A.D.; Bacon, M.P.; Michaels, A.F. Natural activities of 32P and 33P and the ratio in suspended particulate matter and plankton in the Sargasso Sea. Deep Sea Res. Part II. Top. Stud. Oceanogr. 1996, 43, 421–436. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O. Phosphorus 32, phosphorus 33, beryllium 7, and lead 210: Atmospheric fluxes and utility in tracing stratosphere/troposphere exchange. J. Geophys. Res. Atmos. 1999, 104, 11745–11754. [Google Scholar] [CrossRef]
- Benitez-Nelson, C.R.; Buesseler, K.O. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean. Nature 1999, 398, 502–505. [Google Scholar] [CrossRef]
- Chen, M.; Yang, Z.; Zhang, L.; Qiu, Y.; Ma, Q.; Huang, Y. Determination of cosmogenic 32P and 33P in environmental samples. Acta Oceanol. Sin. 2013, 32, 18–25. [Google Scholar] [CrossRef]
- Nakanishi, T.; Kusakabe, M.; Aono, T.; Yamada, M. Simultaneous measurements of cosmogenic radionuclides 32P, 33P and 7Be in dissolved and particulate forms in the upper ocean. J. Radioanal. Nucl. Chem. 2009, 279, 769–776. [Google Scholar] [CrossRef]
- Dovhyi, I.I.; Kremenchukskii, D.A.; Kozlovskaia, O.N.; Bezhin, N.A.; Proskurnin, V.Y. Study of phosphorus biodynamics in the Heracles Peninsula water area using 32, 33P isotopes. Sci. Notes V.I. Vernadsky Crime. Federal Univ. Biol. Chem. 2019, 5, 221–233. (In Russian) [Google Scholar]
- Dovhyi, I.I.; Kremenchukskii, D.A.; Kozlovskaia, O.N.; Bezhin, N.A.; Khlystov, V.A.; Proskurnin, V.Y. The use of cosmogenic radioisotopes 32P, 33P to study the biodynamics of phosphorus in the water area of the Heraclean Peninsula in the spring. Sci. Notes V.I. Vernadsky Crime. Federal Univ. Biol. Chem. 2020, 6, 274–286. (In Russian) [Google Scholar]
- Bezhin, N.A.; Frolova, M.A.; Dovhyi, I.I.; Kozlovskaia, O.N.; Slizchenko, E.V.; Shibetskaia, I.G.; Khlystov, V.A.; Tokar’, E.A.; Tananaev, I.G. The Sorbents Based on Acrylic Fi-ber Impregnated by Iron Hydroxide (III): Production Methods, Properties, Application in Oceanographic Research. Water 2022, 14, 2303. [Google Scholar] [CrossRef]
- Bezhin, N.A.; Frolova, M.A.; Kozlovskaya, O.N.; Slizchenko, E.V.; Shibetskaya, Y.G.; Tananaev, I.G. Physical and chemical regularities of phosphorus and beryllium recovery from the seawater by acrylate fiber based on iron(+3) hydroxide. Process. 2022, 10, 2010. [Google Scholar] [CrossRef]
- Krishnaswami, S.; Lal, D.; Somayajulu, B.L.K.; Dixon, F.S.; Stonecipher, S.A.; Craig, H. Silicon, radium, thorium, and lead in seawater: In-situ extraction by synthetic fibre. Earth Planet. Sci. Lett. 1972, 16, 84–90. [Google Scholar] [CrossRef]
- Extraction of 7Be from Seawater Using Fe-Fibers—CMER. Available online: https://cmer.whoi.edu/recipe/extraction-of-7be-from-seawater-using-fe-fibers/ (accessed on 30 December 2022).
- Mass Concentration of Phosphates in Sea Waters; Guidance document 52.10.738-2010; Publishing Factory Offset Printing: Moscow, Russia, 2010; 27p. (In Russian)
- Charlot, G. Les Methodes de la Chimie Analytique. Quatrie`me E’dition Entie`Rement Refondue; Masson et Cie: Paris, France, 1961; 1204p. [Google Scholar]
- Lomas, M.W.; Burke, A.L.; Lomas, D.A.; Bell, D.W.; Shen, C.; Dyhrman, S.T.; Ammerman, J.W. Sargasso Sea phosphorus biogeochemistry. An important role for dissolved organic phosphorus (DOP). Biogeoscience 2010, 7, 695–710. [Google Scholar] [CrossRef] [Green Version]
Date | Depth, m | Concentration Values for Various Forms of Phosphorus, µmol/L | Concentration Particulate Matter, mg/L | |||
---|---|---|---|---|---|---|
DIP | TDP | DOP | TSP | |||
6 December 2021 | 3 | 0.08 | 0.21 | 0.13 | 0.11 | 1.94 |
10 | 0.07 | 0.20 | 0.13 | 0.09 | 1.61 | |
20 | 0.07 | 0.21 | 0.14 | 0.07 | 1.27 | |
30 | 0.07 | 0.21 | 0.14 | 0.07 | 0.96 | |
23 April 2022 | 3 | 0.12 | 0.23 | 0.11 | 0.12 | 2.12 |
10 | 0.11 | 0.23 | 0.12 | 0.10 | 1.76 | |
20 | 0.11 | 0.21 | 0.10 | 0.09 | 1.35 | |
30 | 0.10 | 0.22 | 0.12 | 0.07 | 1.05 | |
10 July 2022 | 3 | 0.06 | 0.17 | 0.11 | 0.08 | 1.45 |
10 | 0.06 | 0.16 | 0.10 | 0.07 | 1.51 | |
20 | 0.05 | 0.16 | 0.11 | 0.07 | 1.19 | |
30 | 0.05 | 0.15 | 0.10 | 0.06 | 0.89 | |
8 October 2022 | 3 | 0.05 | 0.25 | 0.20 | 0.07 | 1.51 |
10 | 0.05 | 0.24 | 0.19 | 0.06 | 1.56 | |
20 | 0.04 | 0.22 | 0.18 | 0.04 | 1.32 | |
30 | 0.03 | 0.22 | 0.19 | 0.04 | 1.01 |
Date | Depth, m | Dissolved Form | Particulate Form | ||||
---|---|---|---|---|---|---|---|
A(33P), dpm/m3 | A(32P), dpm/m3 | 33P/32P | A(33P), dpm/m3 | A(32P), dpm/m3 | 33P/32P | ||
6 December 2021 | 3 | 3.11 ± 0.16 | 2.53 ± 0.13 | 1.23 ± 0.12 | 2.71 ± 0.14 | 1.63 ± 0.08 | 1.66 ± 0.17 |
10 | 2.83 ± 0.14 | 2.31 ± 0.12 | 1.23 ± 0.12 | 2.35 ± 0.12 | 1.42 ± 0.07 | 1.65 ± 0.17 | |
20 | 2.24 ± 0.11 | 1.82 ± 0.09 | 1.23 ± 0.12 | 2.11 ± 0.11 | 1.28 ± 0.06 | 1.65 ± 0.17 | |
30 | 1.38 ± 0.07 | 1.11 ± 0.06 | 1.24 ± 0.12 | 1.75 ± 0.09 | 1.06 ± 0.05 | 1.65 ± 0.17 | |
23 April 2022 | 3 | 2.67 ± 0.13 | 2.44 ± 0.12 | 1.09 ± 0.11 | 1.84 ± 0.09 | 1.21 ± 0.06 | 1.52 ± 0.15 |
10 | 2.41 ± 0.12 | 2.19 ± 0.11 | 1.10 ± 0.11 | 1.55 ± 0.08 | 1.02 ± 0.05 | 1.52 ± 0.15 | |
20 | 1.87 ± 0.09 | 1.70 ± 0.09 | 1.10 ± 0.11 | 1.23 ± 0.06 | 0.81 ± 0.04 | 1.52 ± 0.15 | |
30 | 1.02 ± 0.05 | 0.93 ± 0.05 | 1.10 ± 0.11 | 0.65 ± 0.03 | 0.43 ± 0.02 | 1.51 ± 0.15 | |
10 July 2022 | 3 | 2.58 ± 0.13 | 2.04 ± 0.10 | 1.26 ± 0.13 | 3.31 ± 0.17 | 2.06 ± 0.10 | 1.61 ± 0.16 |
10 | 2.37 ± 0.12 | 1.88 ± 0.09 | 1.26 ± 0.13 | 3.01 ± 0.15 | 1.88 ± 0.09 | 1.60 ± 0.16 | |
20 | 1.98 ± 0.10 | 1.56 ± 0.08 | 1.27 ± 0.13 | 2.74 ± 0.14 | 1.71 ± 0.09 | 1.60 ± 0.16 | |
30 | 1.38 ± 0.07 | 1.09 ± 0.05 | 1.27 ± 0.13 | 2.22 ± 0.11 | 1.39 ± 0.07 | 1.60 ± 0.16 | |
8 October 2022 | 3 | 2.71 ± 0.14 | 2.33 ± 0.12 | 1.16 ± 0.12 | 3.02 ± 0.15 | 2.00 ± 0.10 | 1.51 ± 0.15 |
10 | 2.49 ± 0.12 | 2.14 ± 0.11 | 1.16 ± 0.12 | 2.75 ± 0.14 | 1.82 ± 0.09 | 1.51 ± 0.15 | |
20 | 2.01 ± 0.10 | 1.75 ± 0.09 | 1.15 ± 0.12 | 2.42 ± 0.12 | 1.60 ± 0.08 | 1.51 ± 0.15 | |
30 | 1.25 ± 0.06 | 1.09 ± 0.05 | 1.15 ± 0.12 | 1.96 ± 0.10 | 1.29 ± 0.06 | 1.52 ± 0.15 |
Date | Circulation Time tav, Day | Circulation Rate υav, µmol/m3·Day | Circulation Degree rav, µmol/m2·Day | |||
---|---|---|---|---|---|---|
Dissolved Form | Particulate Form | Dissolved Form | Particulate Form | Dissolved Form | Particulate Form | |
6 December 2021 | 4.5 | 13.9 | 16.1 | 6.1 | 484 | 184 |
23 April 2022 | 4.9 | 15.2 | 22.6 | 6.2 | 678 | 187 |
10 July 2022 | 2.5 | 11.1 | 22.1 | 6.3 | 663 | 189 |
8 October 2022 | 3.2 | 12.7 | 13.4 | 4.1 | 401 | 124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolova, M.A.; Bezhin, N.A.; Slizchenko, E.V.; Kozlovskaia, O.N.; Tananaev, I.G. Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast. Materials 2023, 16, 1791. https://doi.org/10.3390/ma16051791
Frolova MA, Bezhin NA, Slizchenko EV, Kozlovskaia ON, Tananaev IG. Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast. Materials. 2023; 16(5):1791. https://doi.org/10.3390/ma16051791
Chicago/Turabian StyleFrolova, Mariya A., Nikolay A. Bezhin, Evgeniy V. Slizchenko, Ol’ga N. Kozlovskaia, and Ivan G. Tananaev. 2023. "Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast" Materials 16, no. 5: 1791. https://doi.org/10.3390/ma16051791
APA StyleFrolova, M. A., Bezhin, N. A., Slizchenko, E. V., Kozlovskaia, O. N., & Tananaev, I. G. (2023). Assessment of Seasonal Variability in Phosphorus Biodynamics by Cosmogenic Isotopes 32P, 33P around Balaklava Coast. Materials, 16(5), 1791. https://doi.org/10.3390/ma16051791