Interface Calculation of In Situ Micro-Nano TaC/NbC Ceramic Particle Composites
Abstract
:1. Introduction
2. Methods and Details
- An eleven-layer MCs (TaC/NbC) (1 0 0) surface was built, the termination can be either C or Ta/Nb, and in order to avoid creating the dipoles in the periodic cell artificially, both the lower and upper surfaces of the slab must be terminated with the same atomic specie, namely C or Ta/Nb atom;
- Similarly, we also cut an Fe (1 0 0) surface from the bulk Fe crystal with body centered cubic structure (BCC), the thickness of Fe slab was selected so that the interior of the slab is bulk-like, we found the slab with 5 atomic layers was sufficient; The model of Fe/ MCs interface uses a superlattice geometry in which a eleven-layer MCs (1 0 0) slab is placed between two five-layer slabs of Fe (1 0 0), resulting in two identical interfaces per supercell. Due to the periodic boundary condition, the interface structure contains eleven-layer slabs of Fe (1 0 0);
- In order to match the lattice geometry, the (1 0 0) surface of MCs was rotated to a set of new orientations, and then we placed the MCs slab in the middle between two Fe slabs. The orientation relationship we studied in this paper is Fe [0 0 1](1 1 0)//MCs [0 0 1](1 1 0).
3. Calculation Method (Results) and Discussion
3.1. Bulk Phase Characteristics of α-Fe and Carbide MCs
Compounds | a/b/c (Å) | V (Å3) | B (GPa) | ΔrH (eV·atom−1) |
---|---|---|---|---|
α-Fe | 2.82 (2.83 a, 2.87 b) | 22.33 (22.67 a, 23.64 b) | 205.64 (193.80 c) | / |
NbC | 4.49 (4.49 d, 4.47 e) | 90.77 (90.46 d, 89.25 e) | 296.40 (302 f) | −0.70 (−0.73 g) |
TaC | 4.58 (4.46 d, 4.46 h) | 96.03 (88.42 d, 88.54 h) | 331.30 (318 i, 342 j) | −0.75 (−0.76 k) |
3.2. Atom C Mix α-Fe and Model Construction
3.3. The Surface Characteristics of α-Fe and Carbide MCs
3.3.1. Surface Structure Relaxation
3.3.2. Surface Stability
4. Interface Calculation Results and Discussion
4.1. Construction of Interface Model
4.2. Interface Bonding Work
4.3. Interface Fracture Mechanism of Composites
4.4. Interface Electronic Structure
5. Conclusions
- (1)
- For the Fe/MCs (M = Nb, Ta) interface, the bonding strength of the Fe/NbC interface is higher than that of the Fe/TaC interface, and the bonding strength is the highest when the doped C atom is located at the layer 2 position in the α-Fe surface configuration;
- (2)
- By analyzing the fracture mechanism of the composite interface, it is found that the Fe/TaC interface is a weak bonding interface, and the mechanical failure and fracture of the composite material preferentially occur at the interface. The bonding strength of the Fe/NbC interface is generally higher than that of the bulk NbC, and the crack first initiates and propagates at the bulk NbC rather than the interface.
- (3)
- The difference electron density map shows that the metal/ion mixed bonds are formed in the Fe/MCs interface region, and the atomic spacing in the Fe/NbC interface is short, and the interface bonding strength is high.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farahmand, P.; Kovacevic, R. Corrosion and wear behavior of laser cladded Ni–WC coatings. Surf. Coat. Technol. 2015, 276, 121. [Google Scholar] [CrossRef]
- Jankauskas, V.; Antonov, M.; Varnauskas, V.; Skirkus, R.; Goljandin, D. Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matriM. Wear 2015, 328–329, 378. [Google Scholar] [CrossRef]
- Arya, A.; Carter, E.A. Structure, bonding, and adhesion at the TiC(100)//Fe(110) interface from first principles. J. Chem. Phys. 2003, 118, 8982. [Google Scholar] [CrossRef] [Green Version]
- Park, N.-Y.; Choi, J.-H.; Cha, P.-R.; Jung, W.-S.; Chung, S.-H.; Lee, S.-C.C. First-Principles Study of the Interfaces between Fe and Transition Metal Carbides. J. Phys. Chem. 2013, 117, 187. [Google Scholar] [CrossRef]
- Jung, W.-S.; Chung, S.-H. Ab initio calculation of interfacial energies between transition metal carbides and fcc iron. Model. Simul. Mater. Sci. Eng. 2010, 18, 075008. [Google Scholar] [CrossRef]
- Lee, J.-H.; Shishidou, T.; Zhao, Y.-J.; Freeman, A.; Olson, G. Strong interface adhesion in Fe//TiC. Philos. Mag. 2005, 85, 3683. [Google Scholar] [CrossRef]
- Siegel, D.J.; Hector, L.G., Jr.; Adams, J.B. First-principles study of metal–carbide//nitride adhesion: Al//VC vs. Al//VN. Acta Mater. 2002, 50, 619. [Google Scholar] [CrossRef]
- Dudiy, S.V.; Lundqvist, B.I. First-principles density-functional study of metal-carbonitride interface adhesion: Co//TiC(001) and Co//TiN(001). Phys. Rev. B 2001, 64, 045403. [Google Scholar] [CrossRef]
- Ishikawa, F.; Takahashi, T.; Ochi, T. Intragranular Ferrite Nucleation in Medium-Carbon Vanadium Steels. Metal. Mater. Trans. A 1994, 25, 929. [Google Scholar] [CrossRef]
- Yang, Z.G.; Enomoto, M. Discrete lattice plane analysis of Baker–Nutting related B1 compound//ferrite interfacial energy. Mater. Sci. Eng. 2002, 332, 184. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laasonen, K.; Pasquarello, A.; Car, R.; Lee, C.; Vanderbilt, D. Car-Parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Phys. Rev. B 1993, 47, 10142–10153. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.H.; Almlof, J. General methods for geometry and wave function optimization. J. Phys. Chem. C 1992, 96, 9768–9774. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Xiao, B.; Min, T.; Ma, S.; Yi, D. Theoretical calculations on the adhesion, stability, electronic structure, and bonding of Fe/WC interface. Appl. Surf. Sci. 2011, 257, 5671–5678. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Fellinger, M.R.; Hector, L.G.; Trinkle, D.R. Ab initio calculations of the lattice parameter and elastic stiffness coefficients of bcc Fe with solutes. Comput. Mater. Sci. 2017, 126, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Dever, D.J. Temperature dependence of the elastic constants in a-iron single crystals: Relationship to spin order and diffusion anomalies. J. Appl. Phys. 1972, 43, 3293–3301. [Google Scholar] [CrossRef]
- Gao, X.; Wang, H.; Ma, C.; Lv, M.; Ren, H. Segregation of alloying elements at the bcc-Fe/B2–NiAl interface and the corresponding effects on the interfacial energy. Intermetallics 2021, 131, 107096. [Google Scholar] [CrossRef]
- Chung, S.-H.; Jung, W.-S.; Byun, J.-Y. An ab Initio Study of the Energetics for Interfaces between Group V Transition Metal Carbides and bcc Iron. ISIJ Int. 2006, 46, 1523. [Google Scholar] [CrossRef] [Green Version]
- Korir, K.K.; Amolo, G.O.; Makau, N.W.; Joubert, D.P. First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures. Diam. Relat. Mater. 2011, 20, 157. [Google Scholar] [CrossRef]
- Tingaud, D.; Maugis, P. First-principles study of the stability of NbC and NbN precipitates under coherency strains in α-iron. Comp. Mater. Sci. 2010, 49, 60–63. [Google Scholar] [CrossRef]
- Lopez-de-la-Torre, L.; Winkler, B.; Knorr, J.S.K.; Avalos-Borja, M. Elastic properties of tantalum carbide (TaC). Solid State Commun. 2005, 134, 245. [Google Scholar] [CrossRef]
- Kobayashi, K. First-principles study of the electronic properties of transition metal nitride surfaces. Surf. Sci. 2001, 493, 665. [Google Scholar] [CrossRef]
- Teghila, R.; D’Alessioa, L.; Zaccagninoa, M.; Ferrob, D.; Marottac, V.; De Mariad, G. TiC and TaC deposition by pulsed laser ablation: A comparative approach. Appl. Surf. Sci. 2001, 173, 233–241. [Google Scholar] [CrossRef]
Surface | Termination | Interlayer | Slab Thickness (n) | |||
---|---|---|---|---|---|---|
5 | 7 | 9 | 11 | |||
NbC (100) | Nb&C | Δ1,2 | −3.30 | −2.87 | −1.98 | −1.65 |
Δ2,3 | −2.44 | −2.32 | −2.28 | −2.12 | ||
Δ3,4 | −1.23 | −0.95 | −0.41 | |||
Δ4,5 | 1.22 | 0.87 | ||||
Δ5,6 | −0.36 | |||||
TaC (100) | Ta&C | Δ1,2 | −3.17 | −3.12 | −3.13 | −3.12 |
Δ2,3 | −1.41 | −1.25 | −1.11 | −1.11 | ||
Δ3,4 | −0.99 | −0.90 | −0.76 | |||
Δ4,5 | −0.80 | −0.71 | ||||
Δ5,6 | −0.67 |
Number of Layers (n) | Surface Energy (J/m2) | ||
---|---|---|---|
α-Fe (100) | NbC (100) | TaC (100) | |
3 | 2.47 | 1.29 | 1.27 |
5 | 2.46 | 1.29 | 1.27 |
7 | 2.45 | 1.28 | 1.26 |
9 | 2.45 | 1.28 | 1.27 |
11 | 2.45 | 1.28 | 1.27 |
Interfaces | Layer | Unrelaxed | Relaxed | ||
---|---|---|---|---|---|
d0 (Å) | Wad (J/m2) | d0 (Å) | Wad (J/m2) | ||
Fe/NbC | 1 | 2.78 | 1.01 | 3.32 | 2.00 |
2 | 2.81 | 1.09 | 2.61 | 2.72 | |
3 | 2.84 | 1.05 | 2.71 | 2.61 | |
4 | 2.86 | 0.99 | 2.73 | 2.60 | |
Fe/TaC | 1 | 2.79 | 1.25 | 3.04 | 1.62 |
2 | 2.8 | 1.38 | 2.87 | 2.10 | |
3 | 2.82 | 1.3 | 2.97 | 1.98 | |
4 | 2.79 | 1.28 | 3.02 | 1.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Xu, Y.; Li, W. Interface Calculation of In Situ Micro-Nano TaC/NbC Ceramic Particle Composites. Materials 2023, 16, 1887. https://doi.org/10.3390/ma16051887
Li J, Xu Y, Li W. Interface Calculation of In Situ Micro-Nano TaC/NbC Ceramic Particle Composites. Materials. 2023; 16(5):1887. https://doi.org/10.3390/ma16051887
Chicago/Turabian StyleLi, Jilin, Yunhua Xu, and Wanying Li. 2023. "Interface Calculation of In Situ Micro-Nano TaC/NbC Ceramic Particle Composites" Materials 16, no. 5: 1887. https://doi.org/10.3390/ma16051887
APA StyleLi, J., Xu, Y., & Li, W. (2023). Interface Calculation of In Situ Micro-Nano TaC/NbC Ceramic Particle Composites. Materials, 16(5), 1887. https://doi.org/10.3390/ma16051887