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Abstract: The present work aims to characterize the radiative thermal properties albedo and optical
thickness of Juncus maritimus fibers using a FTIR spectrometer. Measurements of normal/directional
transmittance and normal and hemispherical reflectance are performed. The numerical determination
of the radiative properties is conducted through the computational treatment of the Radiative Transfer
Equation (RTE) using the Discrete Ordinate Method (DOM), together with the inverse method, which
is done through Gauss linearization. As it is a non-linear system, iterative calculations are necessary,
which demand a significant computational cost, and, to optimize this problem, the Neumann method
is used for the numerical determination of the parameters. These radiative properties are useful to
quantify the radiative effective conductivity.

Keywords: Juncus maritimus; albedo; optical thickness; RTE; discrete ordinate method; Gauss lin-
earization; Neumann method

1. Introduction

Juncus maritimus fiber, the object of analysis in this work, is a biodegradable, ecolog-
ically sustainable material that can be obtained continuously throughout the year. The
Juncus maritimus is a plant that is found in countries that have a high rate of solar incidence,
so it is interesting to analyze the radiative properties of the fiber, as a function of solar radi-
ation and the spectrum band belonging to infrared [1]. Some studies on Juncus maritimus
fiber have already been conducted, and some properties have already been previously
determined, such as the thermal conductivity of Juncus maritimus fiber, which is relatively
low, ranging from 0.521 ± 0.0036 to 0.171 + 0.00223 (W·m−1K−1), depending on the fiber
porosity degree [2]. Juncus maritimus fiber mixed with cement presents a desirable increase
in mechanical properties in terms of strength [3,4]. Figure 1a,b show, respectively, a fiber
sample used in the radiative property analysis and a microscopic view of the fiber. The
thermal conductivity together with the absorption of thermal energy in the form of infrared
radiation allows for a more complete thermal characterization of the Juncus maritimus fiber,
since the heat transfer by radiation inside the porous material can significantly contribute
to the total heat transfer measured due to the high porosity (70%). For traditional porous
insulating media used in construction applications (such as polystyrene foam at room
temperature), the radiation contribution can reach 35% of the total effective thermal con-
ductivity. However, radiation contribution was still neglected in previous works dealing
with thermal conductivity for bio-based materials such as Juncus maritimus fibers [3]. Thus,
it is important to characterize radiative conductivity of such media. As expected, the gain
in terms of thermal insulation, together with the increase in mechanical strength, justifies
the wide use of this material.

Materials 2023, 16, 1891. https://doi.org/10.3390/ma16051891 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma16051891
https://doi.org/10.3390/ma16051891
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-6500-5473
https://doi.org/10.3390/ma16051891
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma16051891?type=check_update&version=1


Materials 2023, 16, 1891 2 of 12

Materials 2023, 16, x FOR PEER REVIEW 2 of 12 
 

 

As expected, the gain in terms of thermal insulation, together with the increase in mechan-

ical strength, justifies the wide use of this material. 

   

                    (a) (b) 

Figure 1. Physical aspects of juncus fiber (a) and its microscopic image (b). 

Some studies have been conducted regarding the behavior of the fiber in relation to 

the energy absorption in the form of radiation [5], but the RTE with spectrum analyses 

has a broader application, as it analyzes the medium contribution to the dispersion of 

radiation, allowing to determine a larger number of parameters. In addition, the determi-

nation of the parameters was conducted through the discretization of the RTE (Radiative 

Transfer Equation) and the Gaussian linearization method. These are consolidated math-

ematical methods and have already been successfully applied, for instance, in the deter-

mination of thermo-radiative properties in cellulose-based materials [6]. It is important to 

mention that the Gaussian linearization method, which consists of determining the solu-

tion of a linear system recursively until the problem converges, can represent a significant 

computational cost, and, to circumvent this problem, this article presents the Neumann 

method, which has satisfactory results, for instance, in the determination of heat diffusiv-

ity [7]. 

2. Experimental Design 

The experiment was conducted using 100 FT-IR and FT-NIR spectrometer devices, 

which operate in the infrared band with a wavelength ranging from 1.2 to 15 µm, with the 

maximum intensity corresponding to a wavelength of 4.26 µm, which indicates that the 

source temperature of the spectrometer is approximately 680.29 K, obtained by the Wien 

displacement law [8]. The air inside the equipment was previously purged, eliminating 

water vapor and CO2 for all experiments performed. Transmittance measurements were 

done with the sample positioned at the focus of the spectrometer converging lens. The 

radiative beam falls directly on the surface of the sample and passes through it. The nu-

merical value of the unabsorbed energy intensity of the beam that passes through the 

sample was determined by the sensor inside the spectrometer. According to the 100 FT-

IR and FT-NIR spectrometer manual, the incident beam opening angle is 5°. In order to 

obtain the radiative properties dependent on normal reflection, the accessory already 

specified for the reflectivity test was coupled to the spectrometer. The incident radiative 

beam on the surface of the sample was at an angle, α, of approximately 10°. The fraction 

of the reflected energy was directed towards the second mirror to, in sequence, fall directly 

on the sensor where the data will finally be processed. Figure 2a,b show the simplified 

scheme of the path of the radiative beam passing through the sample for measuring the 

directional/normal transmittance and the directional/normal reflectance, respectively. [9] 

Figure 1. Physical aspects of juncus fiber (a) and its microscopic image (b).

Some studies have been conducted regarding the behavior of the fiber in relation to
the energy absorption in the form of radiation [5], but the RTE with spectrum analyses has
a broader application, as it analyzes the medium contribution to the dispersion of radiation,
allowing to determine a larger number of parameters. In addition, the determination of
the parameters was conducted through the discretization of the RTE (Radiative Transfer
Equation) and the Gaussian linearization method. These are consolidated mathematical
methods and have already been successfully applied, for instance, in the determination of
thermo-radiative properties in cellulose-based materials [6]. It is important to mention that
the Gaussian linearization method, which consists of determining the solution of a linear
system recursively until the problem converges, can represent a significant computational
cost, and, to circumvent this problem, this article presents the Neumann method, which
has satisfactory results, for instance, in the determination of heat diffusivity [7].

2. Experimental Design

The experiment was conducted using 100 FT-IR and FT-NIR spectrometer devices,
which operate in the infrared band with a wavelength ranging from 1.2 to 15 µm, with the
maximum intensity corresponding to a wavelength of 4.26 µm, which indicates that the
source temperature of the spectrometer is approximately 680.29 K, obtained by the Wien
displacement law [8]. The air inside the equipment was previously purged, eliminating
water vapor and CO2 for all experiments performed. Transmittance measurements were
done with the sample positioned at the focus of the spectrometer converging lens. The
radiative beam falls directly on the surface of the sample and passes through it. The
numerical value of the unabsorbed energy intensity of the beam that passes through the
sample was determined by the sensor inside the spectrometer. According to the 100 FT-IR
and FT-NIR spectrometer manual, the incident beam opening angle is 5◦. In order to obtain
the radiative properties dependent on normal reflection, the accessory already specified for
the reflectivity test was coupled to the spectrometer. The incident radiative beam on the
surface of the sample was at an angle, α, of approximately 10◦. The fraction of the reflected
energy was directed towards the second mirror to, in sequence, fall directly on the sensor
where the data will finally be processed. Figure 2a,b show the simplified scheme of the path
of the radiative beam passing through the sample for measuring the directional/normal
transmittance and the directional/normal reflectance, respectively. [9]
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Figure 2. Diagram of the path of the radiative beam over the sample referring to the transmittance 

(a) and normal reflectance measurements, respectively (b). 
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was manually moved, one degree at time, within the lower and upper limits between the

10° and 35° interval; above this angle, the diffusely reflected signal was no longer detected, 
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Figure 3. Diagram of the path traveled by a beam in a diffuse condition. 

To confine the fiber, which is a granulated material, in the 1 mm thick sample holder, 

a PVC plastic film was used, as shown in Figure 4. The plastic film acts in a participatory 

way, interfering in the results obtained in the fiber experiment [10]. 

Figure 4. Juncus maritimus fiber placed in spectrometer sample holder apparatus, 30 mm in diam-

eter. 

Figure 2. Diagram of the path of the radiative beam over the sample referring to the transmittance (a)
and normal reflectance measurements, respectively (b).

One of the mirrors was fixed for the diffuse reflectance measurement while the other
was manually moved, one degree at time, within the lower and upper limits between the
10◦ and 35◦ interval; above this angle, the diffusely reflected signal was no longer detected,
Figure 3.
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To confine the fiber, which is a granulated material, in the 1 mm thick sample holder, a
PVC plastic film was used, as shown in Figure 4. The plastic film acts in a participatory
way, interfering in the results obtained in the fiber experiment [10].
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Figure 5a,b show how the samples were positioned inside the equipment before exe-
cuting the normal and diffuse transmissibility and reflectivity tests, respectively. Numbers
2, 5, 3 and 6 in Figure 5b correspond to the moving mirrors of the accessory used for the
reflection tests. Number 4 represents the sample positioned, while numbers 6, 7 and 8
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indicate the mirror angle in meters. The opening indicated by the number 1 is from where
the radiative beam leaves the FTIR to enter the reflection test accessory.
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(b) measurements.

3. Discrete Ordinate Method

The Radiative Transfer Equation (RTE) was the mathematical equation used to describe
the behavior of the radiation distribution within the material. The radiation propagates
inside the fiber, interacts with the particulate, which partially absorbs the incident energy,
transmitting and scattering the remaining amount. In addition to the energy carried by
the external radiative beam, the same particulate can receive energy from its surroundings
through thermal radiation from the medium itself. Neighborhood scattering can mitigate
the intensity of the energy transmitted by the particulate, as part of the previously scattered
intensity returns to the particulate in the form of reflected energy [11]. The radiation that
returns to the particulate due to scattering from the surroundings, in a given direction,
µ′, can be deflected to another direction, µ, which is numerically calculated by the phase
function. The amount absorbed, transmitted and scattered strongly depends on the radia-
tive parameters known as albedo ω and optical thickness τ, whose numerical values vary
according to the wavelength, λ, of the incident radiative beam. To solve the problem, the
following simplifications were considered [12]:

The sample is at room temperature, so the spectral band of the beam intensity emitted
by the sample is different from the FTIR source.

The radiation propagates isotropically, with no preferred direction, through the mate-
rial. As the particulate is scattered randomly, the material can also be considered homoge-
neous. The incident radiative beam fully spreads through the entire sample.

As previously discussed, the transfer equation depends on the phase function, Pλ

which determines the relationship between the intensity of an incident radiative beam on
the particulate in the direction µ′, and the intensity of the radiative beam now emitted by
the same particulate in the µ direction. Therefore, considering the conservation of energy,
and the directional character of the beam, the RTE is mathematically expressed as [13]:

µ
dIλ

dy
+ βλ Iλ =

σλ

2

∫ 1

−1
Iλ

(
y, µ′

)
Pλ

(
µ′, µ

)
dµ′ (1)

where:
Iλ—Spectral intensity of radiation W·m−2·sr−1·µm−1

βλ—Spectral volumetric extinction coefficient m−1

µ—Cosine of the scattered beam angle [-]
µ′—Cosine of the incident beam angle [-]
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Pλ—Phase Function [-]
σλ—Spectral volumetric scattering coefficient m−1

The spectral albedo, ωl, and the spectral optical thickness, τl, are, respectively, defined
as: σλ/βλ and βλ.l where l is the measure of the sample thickness in meters [m]. Equation (1)
was rewritten in discrete ordinates and in a finite volume method for the implementation of
the computational code. Both the term S and the intensity of the radiative beam Iλ, emitted
in any direction j, are evaluated at the points indicated by the index i. S corresponds to the
intensity of energy that affects the particulate due to the participation of the neighborhood
on the volume and I. It is indicated the location of the central point of the differential
volume. Figure 6 represents how the mesh was reproduced in a simplified way [14].
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Equation (1) in discrete ordinates therefore becomes:

Ii+1/2,j =
Si+1/2,jαj/2 + Ii,j

1 + αj/2
(2)

where:
αj =

∆τi+1/2

µj
(3)

Si+1/2,j =
ω

2β

N/2

∑
n=1

wn
(

Pnj Ii+1/2,n + P−nj Ii+1/2,−n
)

(4)

The variables wn and Pnj correspond to the n-weights and phase function evaluated for
the n-directions of the incident beams, used by the Gaussian quadrature, which numerically
calculates the integral [15].

The boundary conditions for all experiments performed, normal transmittance and
normal and diffuse reflectivity, are expressed as [13]:

I(y = 0, µ) =

{
I0λ µ0 ∼= 1
0 0 < µ < 1

(5)

I(y = l, µ) = 0

where:
l—Sample thickness [m]
I0λ —The intensity of the collimated incident beam normally incident onto the sample

[W·m−2sr−1µm−1]
The energy intensity was obtained through the following specified conditions:

I(y = l, µ ∼= 1). The normal and diffuse reflected intensity was obtained following other
conditions: I(y = 0, µ ∼= −1) and ∑0

−1 I(y = 0,−1 < µ ≤ 0).
The value of the expected theoretical radiative intensities can be determined as a

function of the parameters present in the RTE using the Discrete Ordinate Method. The
determination of the parameters present in the RTE, as a function of the experimental data,
will be presented in the next section.

4. Gaussian Linearization Method

As previously mentioned, the Gaussian linearization method was used to determine
the physical parameters known as albedo and optical thickness that are indirectly present
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in the ETR, Equation (1). The expected theoretical values, which refer to the type of
test performed, are calculated through the Taylor series expansion, which is expressed
as follows:

Iti (p1 . . . . . . ., pn)|t=1,2,3 = Iti|initial value +
N=2

∑
i=1

∂It

∂pi
∆pi (6)

The index i = 1 unto N = 2 indicates the parameters to be identified, which for this
article correspond to the numerical values of albedo and optical thickness, respectively. In
addition, the index t = 1, 2, 3 indicates the data obtained both theoretically and experimen-
tally, depending on the type of experiment performed, which are the normal transmittance
and the normal and diffuse reflectance, respectively.

The expansion of the Taylor series together with the Newton–Raphson method, which
forces but does not guarantee the convergence between the theoretical values of the
experimental values, adapted to the least squares method, generates the Gaussian lin-
earization method. The minimization of the sum of squared error function is expressed
mathematically as:

∂Fti(p1 . . . . . . ., pn)

∂pi
=

∂

∂pi

N

∑
t=1

(Iti − Iei)
2 = 0 (7)

Replacing Equation (6) into Equation (7), and expanding the derivatives of the sum
of the squared error function Fti(p1 . . . . . . ., pn) with respect to all dependent variables pi
generates a set of equations that can be represented in matrix form as [16]:∑N

t=1

(
∂It
∂p1

)2
∑N

t=1
∂It
∂p1

∂It
∂p2

∑N
t=1

∂It
∂p2

∂It
∂p1

∑N
t=1

(
∂It
∂p2

)2

[∆p1
∆p2

]
=

[
∑N

t=1(Iti − Iei)
∂It
∂p1

∑N
t=1(Iti − Iei)

∂It
∂p2

]
(8)

Therefore, the method consists of recursively solving the system generated by Equa-
tion (6) represented term-by-term in the following form, A.X = B, where: A indicates the
sensitivity matrix, X the difference between the numerical values of the parameters to be
determined from the values obtained by the previous iteration, and, finally, the source term
B, which corrects the numerical values of the radiative beam intensities, depending on
the type of experiment, calculated from the parameters obtained by the previous iterative
method in relation to the experimental data. The initial values of the parameters to be de-
termined can be considered the same for a material that has similar physical characteristics
to the sample. In addition, the stopping condition of the recursive process depends on the
tolerance that falls on the elements that make up the X matrix.

In the next section, the results obtained by the computer simulation will be presented
together with the experimental values of the tests performed.

5. Numerical Results

Figure 7 presents the experimental data of the beam intensity that crosses the sample,
normalized in relation to the background signal, referring to the transmission measurement.
Its assembly scheme is shown in Figure 5a. These measurements were performed for a
spectral band that has wavelength values varying from 3 µm to 20 µm, which correspond
to the energy emitted by the FTIR thermal source. The maximum value for the normalized
intensity of the beam passing through the sample is 0.0408, and it occurs at a wavelength
of approximately 3.928 µm. All theoretical data were treated considering the absorptivity
of the plastic film [10].
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Figure 7. Relative intensity of the beam transmitted by the incident beam in the considered spectral
band.

Figure 8 presents the experimental data related to the normal and diffuse reflectance
measurements as a function of the same wavelength range of the normal transmittance
measurement. The maximum relative values of the normally and diffusely reflected energy
intensities are 0.0271 and 0.0268, respectively, which happens at the wavelengths of approx-
imately 8.06 µm and 5.26 µm. The reflectance measurements were based on the assembly
presented in Figures 2b and 3. These experiments were conducted in the accessory pertinent
to the reflectivity test, as shown in Figure 5b.
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Figure 9a,b show, respectively: the albedo and optical thickness values. These were
numerically determined by the Gaussian linearization method, also known as the inverse
method, based on experimental data for the spectral band in which the experiment was
carried out.
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Through the volumetric extinction coefficient, βλ, it is possible to determine the radia-
tive conductivity, Kr, present in the Rosseland diffusion equation. Radiative conductivity is
mathematically defined as [17]:

Kr =
3

16βr
σT3 (9)

Being:
Kr—Radiative conductivity [W·m−1K−1]
βr—Average Rosseland attenuation coefficient [m−1]
σ—Stefan–Boltzmann constant [W·m−2K−4]
T—Temperature [K]
For this work, the Stefan–Boltzmann constant was numerically considered as

5.6705119 × 10−8 [W·m−2K−4], and the Rosseland mean attenuation coefficient, defined
as [17]:

1
βr

=
∫ λ2

λ1

1
β(λ)

π

2
C1C2

λ6
e(C2/λT)[

e(C2/λT) − 1
]2 σ1/4

B5/4 dλ/
∫ λ2

λ1

π

2
C1C2

λ6
e(C2/λT)[

e(C2/λT) − 1
]2 σ1/4

B5/4 dλ (10)

where:
C1 = 0.59544 × 10−16 [W·m2]
C2 = 14,388 × 10−6 [m·K]
Applied to the wavelength range between λ1 and λ2 defined from 3 µm to 20 µm, and

considering B = σT4, the radiative conductivity of the Juncus maritimus fiber obtained was
Kr, 0.0022 [W·m−1K−1].

The condition number is the tool needed to determine if the problem converges. An
ill-conditioned matrix means that a minor change in the source term, represented by Vector
B of Equation (6), corresponds to a very large change in vector X. According to [18], a matrix
with the condition number below 20 is considered an already well-conditioned matrix. The
conditioning number is defined as:

Condition number = ‖A‖‖A−1‖ (11)

where:
‖A‖—Matrix A norm
‖A−1‖—Matrix A inverse norm
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For this work, the matrix norm is defined as:

‖Am x n‖ =
(

m

∑
i=1

n

∑
j=1

aij
2

) 1
2

(12)

Figure 10a presents the average conditioning number, considering the number of
iterations performed for each wavelength. Figure 10b also presents the variance corre-
sponding to the results obtained in Figure 10a. The variance of the matrix conditioning
value, for the last iterations, shows that the system is consistent for the entire wavelength
range considered. The values found for the parameters are successively reused for the next
iterative process corresponding to a new wavelength. Therefore, for values in which the
experimental data of the neighborhood are similar to each other, the problem converges
faster. In addition, this type of behavior justifies the dispersion of variance at the beginning
of the process, as shown in Figure 10b.

Materials 2023, 16, x FOR PEER REVIEW 9 of 12 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 =  ‖𝐴‖‖𝐴−1‖ (11) 

where: 
‖𝐴‖—Matrix A norm 
‖𝐴−1‖—Matrix A inverse norm 

For this work, the matrix norm is defined as: 

‖𝑨𝒎 𝒙 𝒏‖ = (∑ ∑ 𝑎𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 )

1

2 (12) 

Figure 10a presents the average conditioning number, considering the number of it-

erations performed for each wavelength. Figure 10b also presents the variance corre-

sponding to the results obtained in Figure 10a. The variance of the matrix conditioning 

value, for the last iterations, shows that the system is consistent for the entire wavelength 

range considered. The values found for the parameters are successively reused for the

next iterative process corresponding to a new wavelength. Therefore, for values in which

the experimental data of the neighborhood are similar to each other, the problem con-

verges faster. In addition, this type of behavior justifies the dispersion of variance at the

beginning of the process, as shown in Figure 10b. 

(a) (b) 

Figure 10. Conditioning number of matrices. (a)Average conditioning number of matrices for each

average wavelength as a function of iterations and (b) variation of conditioning function number 

for each of the iterations. 

As proposed, the present work uses the definition of the Neumann series as an alter-

native to find the solution for the linear problem, A.X = B, which is generated for each 

iteration. The Neumann series is defined as: 𝑨−1 ≈ ∑ (𝑰 − 𝑨)𝑛𝑛
𝑖 where 𝑰 is an identity ma-

trix and the exponent n the series expansion order, which is a variable strongly dependent 

on the precision required by the problem [6]. The Neumann series is applicable to any 

problem if, and only if, ‖𝑨‖ < 1 [18,19]. Figure 11a,b show the maximum value for the 

norm of the sensitivity matrix A for each wavelength and the number of iterations also 

performed in wavelength function, respectively.

Figure 10. Conditioning number of matrices. (a) Average conditioning number of matrices for each
average wavelength as a function of iterations and (b) variation of conditioning function number for
each of the iterations.

As proposed, the present work uses the definition of the Neumann series as an
alternative to find the solution for the linear problem, A.X = B, which is generated for
each iteration. The Neumann series is defined as: A−1 ≈ ∑n

i (I − A)n where I is an
identity matrix and the exponent n the series expansion order, which is a variable strongly
dependent on the precision required by the problem [6]. The Neumann series is applicable
to any problem if, and only if, ‖A‖ < 1 [18,19]. Figure 11a,b show the maximum value for
the norm of the sensitivity matrix A for each wavelength and the number of iterations also
performed in wavelength function, respectively.
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Figure 12a,b present the relative percentage deviation of albedo and optical thickness,
respectively, calculated using the Neumann method in relation to the Gauss–Jordan method.
The deviation was obtained through the mathematical relation:

∣∣Xn − Xg
∣∣/Xg, where Xn

indicates the parameter value obtained through the Neumann method and Xg is the
parameter value obtained through the Gauss method.
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Neumann method compared with the Gauss–Jordan method for all corresponding wavelengths.

The computational cost of the Neumann and Gauss method were, respectively,
5.6782 × 103 s and 4.9907 × 103 s, the difference between the values was small because the
sensitivity matrix is of order 2. The system solution tolerance represented by the equation:
A·X = B, using the Neumann method for this work, was considered in the order of 10−5. For
higher order sensitivity matrices, where we aim to identify additional parameters, and for
a lower level of demand, the Neumann method becomes significantly more advantageous
than other traditional methods [20].
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6. Conclusions

As shown in this work, it is possible to mathematically determine the radiative proper-
ties of Juncus maritimus found in Tunisia, mainly the albedo and optical thickness, through
the Gaussian linearization method, which uses the values generated by the experiments
performed. According to what has been presented, the fiber absorbs most of the incident
energy, something that was already expected in this work.

The contribution of this work is not restricted only to the determination of the radiative
parameters of the fiber, but also to the use of the Neumann method for the solution of
the linear system, at each iteration. The Neumann method can represent an economical
computational time if the idea is to determine a larger number of parameters, which
increases the order of the sensitivity matrix when compared to other methods for solving
linear systems—Gauss–Jordan, LU decomposition, etc.

Another fundamental contribution of this work was finding the radiative conductivity
of the Juncus maritimus fiber for the wavelength range which corresponds to the region
where the energy intensity emitted is most prominent at room temperature. The radiative
conductivity allows further simplifications for finding the global conductivity that corre-
sponds to the flux contribution of the energy intensity, both from the conduction and the
radiation, especially for porous media. It is important to mention that, as expected, the
junco fiber proved to be an organic material that absorbs practically all energy in the form
of radiation for the considered spectrum.
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