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Abstract: Radium isotopes have traditionally been used as tracers of surface and underground fresh
waters in land–ocean interactions. The concentration of these isotopes is most effective on sorbents
containing mixed oxides of manganese. During the 116 RV Professor Vodyanitsky cruise (22 April–17
May 2021), a study about the possibility and efficiency of 226Ra and 228Ra recovery from seawater
using various types of sorbents was conducted. The influence of seawater flow rate on the sorption
of 226Ra and 228Ra isotopes was estimated. It was indicated that the Modix, DMM, PAN-MnO2,
and CRM-Sr sorbents show the best sorption efficiency at a flow rate of 4–8 column volumes per
minute. Additionally, the distribution of biogenic elements (dissolved inorganic phosphorus (DIP),
silicic acid, and the sum of nitrates and nitrites), salinity, and 226Ra and 228Ra isotopes was studied
in the surface layer of the Black Sea in April–May 2021. Correlation dependencies between the
concentration of long-lived radium isotopes and salinity are defined for various areas of the Black
Sea. Two processes control the dependence of radium isotope concentration on salinity: conservative
mixing of riverine and marine end members and desorption of long-lived radium isotopes when river
particulate matter meets saline seawater. Despite the high long-lived radium isotope concentration
in freshwater in comparison with that in seawater, their content near the Caucasus shore is lower
mainly because riverine waters meet with a great open seawater body with a low content of these
radionuclides, and radium desorption processes take place in an offshore area. The 228Ra/226Ra ratio
derived from our data displays freshwater inflow spreading over not only the coastal region, but
also the deep-sea region. The lowered concentration of the main biogenic elements corresponds to
high-temperature fields because of their intensive uptake by phytoplankton. Therefore, nutrients
coupled with long-lived radium isotopes trace the hydrological and biogeochemical peculiarities of
the studied region.

Keywords: 226Ra; 228Ra; seawater; sorbents; sorption; PAN-MnO2; nutrients

1. Introduction

Radium isotopes 223Ra, 224Ra, 226Ra, and 228Ra are widely used in oceanology and
marine radiochemistry when studying the interaction between seawater and groundwater
in the coastal region [1]. Radium isotopes behave conservatively in the marine aquatic
system, not being involved in biogeochemical cycles; that is, their supply and consumption
are not determined by chemical and biological processes. In addition, the difference in
the content of radium isotopes in salt and fresh water is significant (by 5–10 times), which
makes it possible to detect the point sources of fresh water reaching the seas and oceans.
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Elevated values of radium isotope activity are observed at places of freshwater inflow:
estuaries, domestic water discharge points, and sources of submarine groundwater dis-
charge (SGD). Thus, the quantity of radium isotopes, as well as other solutes supplied by
surface and underground waters, is closely related to water salinity and can be used to
determine the content of solutes in various types of waters entering the marine area [2,3].

Sorption materials of various types find numerous applications for the concentration
of radionuclides [4–6]. For the recovery of radium isotopes from seawater, sorbents based
on mixed oxides of manganese, which is usually described by the simplified formula MnO2,
are the most widely used. However, it has been found [7,8] that they contain K1.33Mn8O16
and K1.39Mn3O6. They are responsible for the chemisorption of several radionuclides that
exist in water in ionic form, for example, radium isotopes.

Acrylate [9,10] and cellulose fibers [10], membrane filters [11], and polypropylene
cartridges [12] are widely used as supports for MnO2 impregnation. Moreover, it is possible
to use granulated MnO2 without any support [13].

The sorbent based on acrylic fiber and MnO2 obtained by Moore in the 1970s was
most widely used for the recovery of radium isotopes. At present, this sorbent is supplied
together with radium delayed coincidence counter (RaDeCC) setups designed to measure
short-lived 223Ra and 224Ra isotopes [14] by counting the decay of radon daughter isotopes
219Rn and 220Rn with a detector. Long-lived 226Ra and 228Ra isotopes can be measured after
radiochemical preparation [15].

In [16], MnO2-coated polyamide discs were obtained for the determination of 224Ra,
226Ra, and 228Ra in natural water. This method allows the extraction of radium isotopes
from small-volume samples. However, it cannot be used for seawater samples, since at
a Ca2+ concentration in a solution of more than 2.5 mmol L−1, the sorption efficiency of
radium isotopes by MnO2-coated polyamide discs is less than 50%, and the concentration
of Ca2+ in the water of various seas and oceans is in the range of 5.5–10 mmol L−1. Conse-
quently, the sorption efficiency of radium isotopes by MnO2-coated polyamide discs will
decrease even more. In addition, to determine 228Ra, MnO2-coated polyamide discs must
be kept for about 6–12 months.

Several methods for the recovery and determination of radium isotopes in natural and
biological samples are discussed by the authors of [17]. However, the proposed methods
either have a detection limit higher than the concentration of radium isotopes in seawater
(30–160 dpm m−3), are not intended for extraction from seawater, or show a low recovery
efficiency. For example, the sorption efficiency of 228Ra 1 g of the commercial sorbent MN
resin [13] from Triskem International from 1 L of artificial seawater with a rate of 20 mL
min−1 is 91.3%. With an increase in the flow rate of artificial seawater to 50 mL min−1, the
sorption efficiency of 228Ra falls to 70%, at a rate of more than 100 mL min−1 up to 45%,
and more than 200 mL min−1 up to 30%, which significantly complicates the processing of
a large volume of samples.

At the same time, in our previous work [7], a method for obtaining a sorbent based
on PAN fiber and MnO2 (PAN-MnO2) with better sorption properties was presented.
Therefore, the sorption efficiency of 228Ra recovery from 50 L of seawater by 1 g of PAN-
MnO2 sorbent in the range of flow rates of 50–300 mL min−1 practically does not change
and amounts to 97.4–100%.

It was also shown in our previous work [7] that sorbents of this type allow a simple
γ-spectrometric determination of 7Be, 226Ra, 228Ra, and 234Th. Using these sorbents for
the preconcentration of stable elements is not relevant, since there are already sufficiently
sensitive methods for their analysis.

A detailed comparison of various sorption materials used for the recovery of ra-
dium isotopes from seawater with summary tables was presented in our previous review
paper [18].

There is a lack of data on the concentration of 228Ra in the Black Sea. The data presented
in [19] for the southwestern part were acquired by interpolation from a single station in the
Sea of Marmara. There is also a single measurement from the 1960s of the last century [20]
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and our recent work [7]. There is also no data on the concentration of short-lived 223Ra and
224Ra in the Black Sea.

There is also little information about 226Ra concentration in the deep waters of the Black
Sea. However, the data are ambiguous. The values of the 226Ra concentration in the surface
layer obtained in the 1960s (185–246 dpm m−3) [20,21] and 1990s (50–88 dpm m−3) [22–24]
differ by a factor of three. The authors link this to an increase in primary production due to
industrial and agricultural runoff, and to a lesser extent, a decrease in fluvial sediment loads,
owing to extensive river impoundment. However, it seems that in fact, the methods used in
the 1960s contained methodological errors, because [21] represents that the concentration
of 226Ra on the surface and 2000 m deep is the same, which does not reflect the real data.
Recent works [23] have shown that the concentration of 226Ra on the surface and in the
deep part of the Black Sea differs by 2–3 times. Additionally, the concentration of 226Ra
in river water differs by about 3 times in early and recent works. Therefore, it may seem
that differences between old and newer data reflect not real concentration differences, but
faulty analytical procedures. At the same time, the authors of [22–24] note the interannual
variability of the 226Ra concentration in the surface layer of the Black Sea. This fact deserves
attention, since the concentration was determined by one method using MnO2-coated fiber,
and the quantity of stations performed is quite representative.

It should be noted that, according to [25,26], the concentration of 226Ra increases with
depth, while 228Ra decreases; this is because of the different half-lives of these isotopes and
their ratio in their sources. Therefore, their ratio and their spatial variation are important
characteristics for assessing terrestrial freshwater inflow into the ocean. In addition, colloids
containing manganese and iron, on which radium isotopes are adsorbed, play an important
role in the vertical transfer of radium isotopes, as does the occurrence of redox processes in
the suboxic zone. Thus, the factors that determine the seasonal and interannual variability of
the 226Ra concentration in the Black Sea have not been studied enough, there are practically
no data on the 228Ra concentration in the Black Sea, and the contribution of various sources
of radium isotope input to the Black Sea has not been studied.

This paper is aimed to present the results of a comparison of PAN-MnO2 sorbent
sorption efficiency we obtained earlier with other commercially available sorbents that
have not previously been used for the recovery of radium isotopes from large volumes of
seawater, to select the best sorbents for the concentration of 226Ra and 228Ra from seawater
and analyze the content distribution of these isotopes in the surface layer of the Black Sea
for assessing terrestrial freshwater inflow.

2. Materials and Methods
2.1. Sorbents

The characteristics of various types of sorbents based on manganese oxide (Modix
(SPE Eksorb Ltd, Yekaterinburg, Russia), MDM and DMM (IPCE RAS, Moscow, Russia),
PAN-MnO2), phosphorus oxide PD (IPCE RAS, Moscow, Russia), carbonate-containing
zirconium dioxide Termoxid 3K (JSC “Inorganic sorbents” Co., Zarechny, Russia), barium
silicate CRM-Sr (Institute of Chemistry FEB RAS, Vladivostok, Russia), used to extract
226Ra and 228Ra from seawater are detailed in [27].

We previously [27,28] investigated these sorbents under static and dynamic conditions
for the strontium recovery (as an electronic analog of radium) from seawater. The distribu-
tion coefficients and exchange capacities were determined, followed by the construction of
output [27] and sorption kinetic curves and sorption isotherms [28].

2.2. Hydrological Survey

The distributions of the main hydrological parameters (temperature and salinity)
during the RV Professor Vodyanitsky cruise were measured using the IDRONAUT Ocean
Seven 320 plus CTD oceanographic probe (Idronaut S.R.L., Brugherio, Italy) with a sensor
sampling rate of up to 40 Hz. Measurement errors are as follows: temperature—0.001 ◦C,
electrical conductivity—0.001 mS cm−1, and pressure—0.01%.
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2.3. Sampling and Recovery of 226Ra and 228Ra

The sampling of seawater during the 116 RV Professor Vodyanitsky cruise (22 April–17
May 2021) to determine the content of 226Ra and 228Ra was carried out using a submersible
pump Unipump Bavlenets BV 0.12-40-U5 (Subline Service LLC, Moscow, Russia). Seawater
samples were taken from the surface (3 m below). Water was pumped into plastic contain-
ers on board, each with a volume of 250 L, simultaneously filtering seawater through a
polypropylene filter with a pore diameter of 0.5–1 µm FCPS1M series (Aquafilter Europe
Ltd., Lodz, Poland). Next, seawater was passed through a system of two columns filled
with 25 mL of the sorbent each (PAN-MnO2, Modix, MDM, DMM, PD, Termoxid 3K,
CRM-Sr) at a rate of 2–12 CV min−1 (column volumes per minute). Then the sorbents were
dried in the air and packaged for analysis in a coastal laboratory.

The scheme of the sampling map is shown in Figure 1.
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2.4. Determination of the Activity of 226Ra and 228Ra

The activity of radium isotopes was determined by two methods: gamma spectrometry
and alpha–beta radiometry with radiochemical preparation according to the procedure
described in [29].

For gamma–spectrometric determination of radium isotope activity, after drying,
granular sorbents were placed in Petri dishes and sealed. When using fiber sorbents, the
dried sorbent was ashed in a SNOL-30/1300-I1p muffle furnace (AB UMEGA-GROUP,
Utena, Lithuania) at 700 ◦C for 8 h, then ash was placed in Petri dishes and sealed.

Three weeks after sealing (to achieve equilibrium between 226Ra and 214Pb), the activity
of radium isotopes was measured on a CANBERRA multichannel gamma spectrometer for
measuring X-ray and gamma radiation (Canberra Industries, Meriden, CT, USA) with a
BE3825 detection unit for at least 24 h. The activity of 226Ra was determined by the daughter
radionuclide 214Pb with an energy of 351.9 keV (qγ = 37.2%), and 228Ra by the daughter
228Ac (T1/2 = 6.1 h, qγ = 27.7%) with an energy of 911.6 keV. The gamma spectrometer
was calibrated using a certified source of 226Ra, the geometry and density of which were
identical to the measured samples.

The alpha–beta radiometry method for determining the activity of radium isotopes
with radiochemical preparation according to the method in [29] can be used for sorbents
based on manganese dioxide impregnated on a cellulose or fibrous support (DMM or
PAN-MnO2). To eliminate the effect of short-lived radium isotopes, the sorbent with ra-
dionuclides adsorbed on it was aged for 2 weeks. In the coastal laboratory, the samples were
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leached with 2M HCl and hydroxylamine (ReaChem JSC, Moscow, Russia) to quantitatively
remove the long-lived Ra isotopes. Then, Ra was coprecipitated with BaSO4 (ReaChem JSC,
Moscow, Russia). The precipitate (100 mg) was transferred onto a mount. The counting
sample prepared in this way then was aged for 4–5 days in a Petri dish and measured on
an alpha–beta radiometer UMF-2000 (LLC “Scientific and Production Enterprise “Doza”,
Zelenograd, Russia) for at least 8 h several times, the counting sample was measured again
after 10–12 days.

The sorption efficiency of radionuclide from seawater was determined as [7]:

E = 1− B
A

, (1)

where A and B are the activities of the radionuclide on the sorbent in the first and second
adsorbers.

2.5. Main Biogenic Elements’ Content Determination

Together with sampling for radionuclides, samples for nutrient concentration were
taken. DIP and silicic acid, as well as the sum of nitrates and nitrites in the surface layer
and deep-sea waters of the Black Sea, were analyzed at the coastal laboratory in frozen
samples.

The main elements of the main biogenic cycle were determined photometrically [30]:
mineral phosphorus by molybdenum blue, and silicon by the blue silicomolybdenum
complex. Nitrates (reduced to nitrites) and nitrites were determined by the azo dye formed
upon interaction with the Griess reagent on a two-channel autoanalyzer “AutoAnalyzer
AA II” (Bran+Luebbe GmbH, Norderstedt, Germany) [31].

The relative error of determination was 1.5–2% for DIP (concentration range:
0.2–8 µmol L−1), 0.13–2% for silicic acid (concentration range: 1.1–18.8 µmol L−1), and
0.01–0.1% for nitrates and nitrites (concentration range: 0–1 µmol L−1). Calibration curves
for the determination of nutrients were given in Figure S1 in Supplementary Materials.

3. Results and Discussion

3.1. Assessment of 226Ra and 228Ra Recovery Efficiency by Various Sorbents

During the 116 RV Professor Vodyanitsky cruise, a survey about the possibility and
efficiency of extracting radium isotopes from seawater using various types of sorbents
was conducted.

The results of the determination of the influence of seawater flow rate on the radium
isotope recovery efficiency by various sorbents are shown in Figure 2.

The optimal seawater flow rate for the studied sorbents is 4–8 CV min−1. It is clear that
the sorption efficiency for radium isotopes is more than 80% for the Modix, DMM, PAN-
MnO2, and CRM-Sr sorbents and more than 60% for the MDM and Termoxid 3K sorbents.

Working under expeditionary conditions, to reduce the analysis time, an important
technical task is to achieve a high seawater filtration rate through a fixed sorbent layer.
In these conditions, the appropriate properties of the MDM sorbent with relatively large
granules are shown. The use of highly dispersed sorbents such as Modix makes it difficult
to achieve high filtration rates. Fibers impregnated with manganese dioxide (PAN-MnO2)
have low hydrodynamic resistance and have proven themselves suitable for the sorption of
radionuclides in expeditionary studies [27].
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Figure 2. Dependence of 226Ra and 228Ra recovery efficiency (E, %) on the seawater flow rate by
sorbents: (a) Modix; (b) DMM; (c) PAN-MnO2; (d) CRM-Sr; (e) MDM; (f) Termoxid 3K; (g) PD
(two-column method, two columns with sorbents volume 25 mL each, seawater volume—250 L).
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Radium sorption mechanisms are as follows:

• Sorbents based on manganese oxide (PAN-MnO2, Modix, MDM, DMM) [8]:

4Ra2+ + 6K1.33Mn8O16 → 8K+ + 6Ra0.66Mn8O16,

• Sorbents based on barium silicate (CRM-Sr) [32]:

Ra2+ + BaSiO3 → Ba2+ + RaSiO3,

• Sorbents based on carbonate-containing zirconium dioxide (Termoxid 3K) [33,34]:

2≡Zr-CO3H + Ra2+ + 2H2O→ (≡Zr-CO3)2Ra + 2H3O+,

2≡Zr-CO3Na + Ra2+ → (≡Zr-CO3)2Ra + 2Na+,

• Sorbents based on carbonate-containing phosphorus oxide (PD) [27]:

2Ra2+ + (HO)2PO-O-cellulosic support→ 2H+ + RaO2PO-O-cellulosic support.

Based on the results obtained, a procedure for extracting 226Ra and 228Ra from seawater
was developed using our own and commercially available sorbents (Figure 3):

1. A 200–250 L volume of seawater is pumped into a container on the vessel board,
simultaneously filtering seawater through a polypropylene filter with a pore diameter
of 0.5–1 µm.

2. Two columns are filled with 25 mL of the Modix, DMM, PAN-MnO2, or CRM-Sr
sorbent.

3. A 200–250 L volume of seawater is transmitted through columns with sorbents at a
rate of 4–8 CV min−1.

4. After sorption, the sorbent is dried in an oven at a temperature of 70–80 ◦C.
5. When using granular sorbents, after drying, the sorbent is placed in Petri dishes and

sealed. When using the PAN-MnO2 fibrous sorbent, the sorbent after drying is ashed
in a muffle furnace at 700 ◦C for 8 h. The ash is placed in Petri dishes and sealed.

6. Measurement of the activity of 226Ra and 228Ra is carried out 3 weeks after sealing
(to achieve equilibrium between 226Ra and 214Pb) on a semiconductor gamma spec-
trometer with an exposure of at least 12 h to achieve a measurement error of not more
than 10%.

7. The sorption efficiency of 226Ra and 228Ra is calculated by Equation (1) for two
absorbers.

It should also be noticed that for sorbents based on manganese dioxide impregnated on
a cellulose or fibrous support (DMM or PAN-MnO2), it is possible to determine the activity
of 226Ra and 228Ra by the alpha–beta radiometric method by washing manganese dioxide
together with recovered radionuclides and further radiochemical preparation according to
the method [29] described above.

This method combines the use of the most efficient sorbents with an optimal seawater
flow rate, the simplicity of work in expeditionary conditions, the possibility of using
equipment available for most laboratories, and the relative simplicity of sample preparation.

3.2. Distribution of 226Ra and 228Ra Radionuclides in the Surface Layer of the Black Sea in
Spring 2021

In April–May 2021, 60 samples were taken to determine the concentration of radium
isotopes in the surface layer of the Black Sea. It was shown (Figure 4) that increased
concentrations of 228Ra are observed in the central part of the Black Sea, lowered near
the coast of the Caucasus, which, in our opinion, is associated with lower salinity values
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and the input of fresh water with a higher content of 226Ra. The average concentration
of 228Ra is 73 dpm m−3. The distribution of 226Ra is generally homogeneous and is in
good agreement with the literature data. The average concentration is 77.2 dpm m−3 The
highest concentrations were determined at four stations in Feodosia Bay, with values of
128–150 dpm m−3 for 226Ra and 100.2–110.5 dpm m−3 for 228Ra. At the same time, no
lowered salinity was observed (Figure 5a), except for increased concentrations of nutrients
(Figure 5b–d). In prospect, we plan to study this region in more detail to determine the
source of radium in Feodosia Bay.
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Using data on the 228Ra and 226Ra concentration and salinity, a quantitative assessment
of the relationship between salinity and the concentration of these radionuclides was
acquired. It is known [35–37] that all radium isotopes are supplied to the coastal waters
in a ratio typical for each particular source. Owing to the short half-life, 223Ra (11.4 days)
and 224Ra (3.66 days) are traditionally used to determine the mixing rate in the coastal
region [38], while the long-lived 226Ra and 228Ra isotopes of radium are used to determine
not only the water dynamics in the ocean [39,40] but also the type of freshwater coming
with surface or underground runoff [36].

A detailed consideration of the relationship between long-lived radium isotope concen-
tration and salinity led to the conclusion that at salinity S < 18.0‰, the highest correlation
is observed at stations located along the Caucasian coast (Figure 6). There is significant
freshening due to river runoff (Figure 5a). It is known that a significant amount of radium
isotopes, both dissolved and adsorbed on the suspended matter, comes with river and
groundwater discharge [41]. Desorption of Ra bounded to the particle surface occurs
when particles meet high-ionic-strength water, i.e., freshwater mixes with seawater [42].
Conservative mixing of freshwater and seawater is the dominant process in the nearshore
area, then with increasing distance from the coastline, the desorption processes continue.
However, freshwater meets a great open seawater body, and the equilibrium of the long-
lived Ra concentration cannot be reached instantly and is extended in time. Therefore, at
stations located along the coastline at approximately the same distance from the coastline
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(Figure 6a), the best dependence of the 228Ra concentration on salinity was observed. Here,
the process of conservative mixing of two end members, river and seawater, takes place [42].
The 228Ra/226Ra ratio for these stations was 0.183, which corresponds to the values in the
SGD region of the island of Sicily in the Mediterranean Sea [43]. However, their ratio
throughout the minimum values of the salinity area (Figures 5a and 6c) was 1.05, which
corresponds to the ratio of the 228Ra/226Ra activity available for desorption in the aquifer,
which is close to the 232Th/230Th activity on the surface of solids (usually in the range of
0.5–1.5) [36].
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With increasing distance from the coast, 226Ra highly correlates with salinity (Figure 6b).
This is related to further processes of desorption of radium isotopes from the surface of
suspended matter in river waters, which is supplied in large quantities in this region.

Thus, in this area (Figure 6c), which is most characteristic due to the significant river
runoff, particularly in this observation period, owing to the difference in the half-lives of
228Ra (5.75 years) and 226Ra (1600 years) and due to the larger amount of 226Ra than 228Ra
coming from river waters, equilibrium in the coastal zone is established faster for 228Ra
than for 226Ra (Figure 6a,b).

The processes of conservative mixing of rivers and seawaters and further processes of
radium desorption are shown by the distribution of long-lived radium isotopes and their
ratio in the surface layer (Figure 4). Freshwater input can be traced not only in the coastal
zone, but also in the far offshore part of the study area (Figure 4c).

In the vicinity area of the SGD source near Cape Ayia (southwest coast of Crimea,
Black Sea) [44], the ratio of radium isotopes is significantly lower (Figure 7) (data obtained
within the range from 0 to 100 m from the submarine groundwater source) than in the
areas studied in the 116 RV Professor Vodyanitsky cruise (minimum offshore distance is
within 4 km). Therefore, it can be said that at a great distance from the coastline, many
processes affect the content of these radionuclides, such as the hydrodynamic processes
of mixing, diffusion, and meandering of the Main Black Sea Current and, as a result, the
involvement and transport of coastal waters into the abyssal areas of the sea. In other
words, coastal waters are delivered to far offshore regions of the studied area, owing to
various hydrodynamic processes.
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Figure 7. 228Ra/226Ra ratio in the 116 cruise study area in comparison with the submarine ground-
water source region near Cape Ayia.

3.3. Distribution of Nutrients in the Surface Water Layer of the Black Sea in Spring 2021

The spatial distribution of DIP and silicic acid, as well as nitrate and nitrite ions in
the surface layer, is shown in Figure 5. The average DIP content in the surface layer of the
region under consideration was 0.04 ± 0.04 (from 0.00 to 0.22 µmol L−1), and the content of
silica was 0.7 ± 0.65 µmol L−1 (concentration range: 0.0 to 3.0 µmol L−1). The surface DIP
distribution, silica, and nitrates in the period from 22 April to 17 May 2021, showed the
lowest concentrations of these elements in the region of the Caucasian coast of the Black
Sea (Figure 5b–d). Here, there is an increased temperature (Figure 8) and therefore elevated
uptake of these elements by microplankton and lowered salinity (Figure 5a) due to river
and underground discharge.
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The minimum values of the sum of nitrate and nitrite ions were 0.53 µmol L−1, the
maximum values were 31.13 µmol L−1, and the average values were 3.40 µmol L−1. The
minimum concentrations were observed along the coast of the Caucasus, and the maximum
in the area of Feodosia Bay, the Sevastopol region, and the southwestern coast of Crimea.

4. Conclusions

During the 116 RV Professor Vodyanitsky cruise, various types of sorbents based on
manganese oxide (PAN-MnO2, Modix, MDM, DMM), phosphorus oxide (PD), carbonate-
containing zirconium dioxide (Termoxid 3K), and barium silicate (CRM-Sr) were tested for
the possibility and efficiency of extracting 226Ra and 228Ra from seawater.

It was defined that 226Ra and 228Ra sorption efficiency was more than 80% for the
Modix, DMM, PAN-MnO2, and CRM-Sr sorbents and more than 60% for the MDM and
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Termoxid 3K sorbents at a seawater flow rate of 4–8 CV min−1. Based on the results
obtained, a method for extracting 226Ra and 228Ra from seawater was developed.

The activities of 228Ra and 226Ra and their ratio obtained for the surface layer make it
possible to trace the effect of freshwater runoff. The ratio of these isotopes is higher in the
region of the surface runoff than that for the area of SGD (offshore distance within 100 m).
This can be explained by the fact that with increasing distance from the coastline (from 4 to
48 km), the equilibrium is reached faster for 228Ra, owing to processes of desorption from
riverine particulate matter and various long-lived radium half-lives. Therefore, a more
detailed study of the water area adjacent to the submarine source will make it possible
to study the behavior of these radionuclides in the Black Sea when they enter from SGD
sources and thus identify the groundwater input in coastal regions.

The low content of phosphates and silica in the surface layer corresponds to elevated
temperature and low salinity values in the corresponding area, which indicates the active
involvement of these elements in biogeochemical processes. An increased value of nitrates
and nitrites was observed in coastal areas, especially in Feodosia Bay (a slight increase in
the concentration of silicic acid and rather high concentrations of 226Ra and 228Ra were also
observed there). A more detailed study of Feodosia Bay is required to determine the source
of radium in this region.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ma16051935/s1, Figure S1: Calibration curves for the determination
of DIP, silicic acid, nitrates and nitrites.
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