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Abstract: In this work, NiAl-xWC (x = 0 − 90 wt.% WC) intermetallic-based composites were
successfully synthesized by mechanical alloying (MA) and a hot-pressing approach. As initial
powders, a mixture of nickel, aluminum and tungsten carbide was used. The phase changes in
analyzed systems after mechanical alloying and hot pressing were evaluated by an X-ray diffraction
method. Scanning electron microscopy and hardness test examination were used for evaluating
microstructure and properties for all fabricated systems from the initial powder to the final sinter
stage. The basic sinter properties were evaluated to estimate their relative densities. Synthesized and
fabricated NiAl-xWC composites showed an interesting relationship between the structure of the
constituting phases, analyzed by planimetric and structural methods and sintering temperature. The
analyzed relationship proves that the structural order reconstructed by sintering strongly depends
on the initial formulation and its decomposition after MA processing. The results confirm that it is
possible to obtain an intermetallic NiAl phase after 10 h of MA. For processed powder mixtures, the
results showed that increased WC content intensifies fragmentation and structural disintegration. The
final structure of the sinters fabricated in lower (800 ◦C) and higher temperature regimes (1100 ◦C),
consisted of recrystallized NiAl and WC phases. The macro hardness of sinters obtained at 1100 ◦C
increased from 409 HV (NiAl) to 1800 HV (NiAl + 90% WC). Obtained results reveal a new applicable
perspective in the field of intermetallic-based composites and remain highly anticipated for possible
application in severe-wear or high-temperature conditions.

Keywords: intermetallic-based composites; mechanical alloying; structural analysis; microstructure
evaluation

1. Introduction

Nickel aluminide (NiAl) is an intermetallic phase with potential applications in high-
temperature structural materials and coatings due to its attractive properties [1]. Over a
wide range of Ni content (45.0 to 58.5 at. % Ni), NiAl crystallizes in the A2 lattice (bcc) and
exhibits an ordered L2o (B2) crystal structure (2 atoms per cell—1 nickel atom from the
corners, 1 aluminum atom from the geometric center of the cell). Moreover, the melting
point reaches 1911 K [2,3]. This ordered structure provides high-temperature strength and
thermal stability, while the presence of aluminum in the compound significantly improves
its oxidation resistance [4]. In addition, NiAl has high thermal conductivity, relatively low
density (5.90 g/cm3) and relatively good tribological properties [5]. However, properties
that often preclude the use of pure NiAl phase are its low ductility and high brittleness at
room temperature, as well as low creep resistance at high temperatures [4,6].

To improve the properties of NiAl phase the composite approach could be used. The
addition of other phases to a NiAl matrix (ceramics in particular) has been previously re-
searched as it holds great potential for improving the mechanical properties of NiAl, such as
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wear resistance and hardness [7]. Various refractory and hard phases have been used as re-
inforcement, such as borides (CrB2-ZrB2 [8], ZrB2 [9], TiB2 [10] and TaB2-TaB [11]), nitrides
(TiN [12]), oxides (Al2O3 [13,14], V2O5 [15] and Ag3VO4 [16]), and carbides (TiC-Al2O3 [17],
Mo2C [18], NbC [19] and TiC [20], WC [5,21]). It has been confirmed that tribological proper-
ties could be improved significantly by the addition of the oxide as V2O5 nanowires, which
allows a V2O5-enriched glaze film to form at elevated temperatures [15]. Another attempt
was made with Ag3VO4 nanoparticles. In that case, the temperature-adaptive action of the
phase composition led to the overall decrease in wear rate at a broad temperature range [16].
Moreover, the influence of the addition of graphene on the tribological properties of NiAl
was also studied, where the formation of an anti-friction tribo-film has been observed on
worn surfaces after the incorporation of graphene [22]. The addition of borides such as
CrB2 and ZrB2 was recognized as an effective way to decrease the wear rate compared to
NiAl with no reinforcement [8]. ZrB2 and TiB2 have been proven to significantly increase
the microhardness of NiAl intermetallic phase [23]. Furthermore, an interesting example
was recognized for WC, probably due to its well-known characteristics in cermets and
sintered carbide applications. Various research has also been conducted on the addition
of WC [4–6,21,24–26]. It is characterized by elevated hardness and wear resistance, so it
can significantly strengthen NiAl composites. In addition, it reduces brittleness at low
temperatures and increases creep resistance at high temperatures.

Previous studies of NiAl-WC systems have focused on the effects of WC on the
microstructure and mechanical properties and obtained [5]. An example is the work on
the effect of mechanical activation performed prior to combustion synthesis on the final
microstructure of the composite. This study confirmed the relationship based on previous
work indicating an increase in reactions’ kinetics during combustion synthesis with the
application of mechanical activation [4]. Another work focused on alloyed coatings applied
by laser surface alloying, which utilizes high-energy lasers to irradiate and melt precursor
materials with the substrate surface. It studied the effects of WC and CeO2 additives on
the tribological properties and behavior of composite coatings at temperatures of 25 ◦C
and 400 ◦C. It also investigated the microstructure, microhardness and fracture toughness
of the composite coatings [6] cladded on martensitic stainless steel. Research has proven
that such prepared coatings (with a pre-and post-heat treatment) permit obtaining coatings
that are free from cracks and pores. Due to the work-hardening characteristics of NiAl
and WC’s strength, an increase in cavitation erosion resistance has been observed in the
NiAl coating [24]. Thermal explosion reaction also remains interesting as a method to
fabricate Ni intermetallic composites with WC. Starting with Ni, Al and WC powders,
the reaction led to the fabrication of NiAl/WC composites with very good tribological
properties in a short processing time [5,21]. Nanomaterials based on NiAl can also be
successfully prepared by mechanical alloying with subsequent heat treatment [25].

The mechanical alloying (MA) method permits fabricating alloys and composites
with a cold synthesis, for which the grain size could significantly diminish the number of
generated defects [25]. It enables the synthesis of nanocrystalline materials, which may
exhibit lower brittleness compared to their conventionally microcrystalline analogues [27].

The present study investigates NiAl-xWC composites (x = 0 wt.%, 10 wt.%, 20 wt.%,
40 wt.%, 60 wt.%, 80 wt.% and 90 wt.%) prepared by mechanical alloying of Ni, Al and
WC powders, followed by hot-pressing sintering at 800 ◦C and 1100 ◦C. The conducted
research takes into account the influence of the chemical composition, structural state of the
prepared precursor powders and sintering temperature on the structure evaluation process
and phase transformations during synthesis and the next sintering process.

2. Materials and Methods
2.1. Sample Preparation

The starting powder mixture was made from commercial powders of Ni (<1 µm,
99.5%, Sigma Aldrich, St. Louis, MO, USA), Al (99.8%, Onyxmet, Olsztyn, Poland) and
WC (2 µm, 99%, Sigma Aldrich). Figure 1 shows SEM microphotographs of the starting
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components. The powders were mechanically alloyed to obtain intermetallic and composite
precursors. The weight ratio of Ni and Al powders was 7:3 and the addition of WC was
10 wt.%, 20 wt.%, 40 wt.%, 60 wt.%, 80 wt.% and 90 wt.%. The powder precursors for all
compositions were synthesized for 10 h in stainless steel vials under an argon atmosphere.
The ball-to-powder ratio (BPR) equaled 10. The process was carried out on a SPEX 800
Mixer Mill (SPEX SamplePrep, Metuchen, NJ, USA). All activities related to the preparation
of powders were conducted in a glove box with an inert argon atmosphere (Labmaster 130).
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Figure 1. SEM microphotographs of Al (a), Ni (b) and WC (c) powder precursors.

In the next step, the powder’s precursors were consolidated through a hot pressing
process. The sintering step was carried out on Elbit (Koszyce Wielkie, Poland) equipment
at 800 ◦C and 1100 ◦C, with an acting pressure of 3 kN in a vacuum condition (<50 Pa).
Heating was conducted through induction; the heating time was 30 s and the holding time
at the sintering temperature was 300 s. The scheme of the sintering process is shown in
Figure 2. The specimens prepared by the above procedure were marked as Table 1 shows.
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Figure 2. Schematic illustration of the hot-pressing process.

Table 1. Bulk sample indications.

Sample Sintering Temperature [◦C] Symbol

NiAl

800

NiAl-800
NiAl + 10% WC 10–800
NiAl + 20% WC 20–800
NiAl + 40% WC 40–800
NiAl + 60% WC 60–800
NiAl + 80% WC 80–800
NiAl + 90% WC 90–800
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Table 1. Cont.

Sample Sintering Temperature [◦C] Symbol

NiAl

1100

NiAl-1100
NiAl + 10% WC 10–1100
NiAl + 20% WC 20–1100
NiAl + 40% WC 40–1100
NiAl + 60% WC 60–1100
NiAl + 80% WC 80–1100
NiAl + 90% WC 90–1100

2.2. Material Characterizations

The phase characterization of the powders during the mechanical alloying process
and samples after consolidation was conducted using X-ray diffraction (XRD, Panalytical
Empyrean, Almelo, Netherlands) equipment with a copper anode (CuKα—1.54 Å) with
a Bragg–Brentano reflection mode. The measurement parameters were set up for voltage
45 kV, anode current 40 mA, 2θ range 20–90◦, time per step 59.69 s/step and step size
0.0501◦ in all cases.

The following structural models were used for phase characterization:

1. Mechanically alloyed powders:

• NiAl—ref. code 01-083-3994
• WC—ref. code 00-025-1047
• W2C—ref. code 01-079-5801

2. Sintered specimens:

• NiAl—ref. code 04-005-7098
• WC—ref. code 04-016-4756

The determination of crystallite size and lattice strain of the phases after the mechanical
alloying process was calculated by the Williamson–Hall method with an assumed uniform
deformation model (UDM) used according to the formula below:

βcos θ = ε(4sin θ) +
Kλ

D

where β is the width of X-ray diffraction at half maximum intensity, θ is the Bragg diffraction
angle, λ is the wavelength of the radiation, ε is an inner strain, D is the crystallite size and
K is the Scherrer constant.

The mean internal strain can be obtained from the slope of βcos θ as a function of
sin θ and the average crystallite size can be calculated from the intersection of this line at
sin θ = 0.

Lattice parameter estimation and phase quantitative analysis were based on the Ri-
etveld profile fitting method performed using High Score Plus software with the PDF-4
ICDD structural database. The approach applied involved a simulation of the diffraction
pattern based on the analyzed structural models listed above with reference codes. The
calculated pattern of the model structure was fitted to the observed one by minimizing the
sum of the squares and after a refinement using the Marquardt least squares algorithm.
The definition of the residual pattern of the modelled data is as follows:

• Rwp—weighted pattern residual indicator
• Rexp—expected residual indicator
• GOF—the goodness of fit

The powders’ morphology and sinters microstructure were characterized under
different magnifications using a scanning electron microscope (SEM, MIRA3, Tescan,
Brno, Czech Republic) supplied with an Ultimax 65 energy dispersive spectrometer detec-
tor (Oxford Instruments, Abingdon, Oxfordshire, UK). To compare the results obtained
by the Rietveld method, the percentage of the NiAl phase in the composites sintered at
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1100 ◦C was determined by the planimetric method. Olympus Stream phase analysis
software was used for this purpose. The particle-size analysis of the powders was per-
formed using the MountainsSEM software (Digital Surf, Besançon, France) based on the
SEM microphotographs.

Vickers hardness (HV) was measured based on the ISO 6507-1 standard, using a
microhardness tester (INNOVOTEST Nexus 4302, Maastricht, The Netherlands). For each
polished sample, 10 measurements were made along the cross-section of the sample under
a load of 1 kg. The load operating time was 10 s.

The density of the sinters was determined using the Archimedes method in deionized
water at 25 ◦C, while the theoretical density of the materials was calculated for the rule of
the mixtures.

3. Results and Discussion

In the present study, the composites based on an intermetallic NiAl matrix with WC
reinforcement were obtained using mechanical alloying (MA) and powder metallurgy
(PM) methods.

In the next step, the impact of the ceramic phase addition on phase transformation,
microstructure and such properties as hardness and density were determined.

3.1. Structural and Morphological Powder Analysis
3.1.1. Synthesis of the Intermetallic NiAl matrix

The process of mechanical alloying allowed the synthesis of the NiAl intermetallic
phase. Figure 3 summarizes the XRD results for the Ni-Al system after different synthesis
times. It can be seen that the XRD pattern after 15 min of milling shows sharp peaks,
which indicate the raw Al and Ni phases. After 2 h of the process, the transformation to
the NiAl intermetallic phase begins; however, unreacted starting components remain in
the composition. With increasing milling time up to 5 h, peaks originating from the Al
and Ni phase recede. Further milling causes a decrease in the intensity and an increase
in half-widths of the peaks, which proves the fragmentation of crystallites and ongoing
amorphization. In work [1], the NiAl phase was also fabricated by mechanical synthesis;
however, in this case the synthesis of the phase took place after 30 h of grinding. However,
Zarezadeh Mehrizi et al. [2] reported the formation of the NiAl phase after 10 h of milling.
In this work, it was possible to obtain the NiAl phase after 5 h of grinding, which increases
the efficiency of the synthesis process.

The size of crystallites and stresses at various stages of the synthesis were determined
according to the Willamson –Hall equation. The results are presented in Table 2 and
Figure 4.

Table 2. Estimated structure size and strain factors based on Williamson–Hall plots for NiAl powders
after various milling times.

NiAl Milling Time ε D [nm]

1 h 0.002844 72
2 h 0.002012 27
5 h 0.009218 17
7 h 0.009970 13
10 h 0.021500 10

After 1 h of milling, the crystallite size was 72 nm and was reduced to 10 nm after 10 h
of synthesis.

Figure 1 shows SEM microphotographs of the Al, Ni and WC powders. The starting
components differ significantly in both morphology and particle size. Al powder is charac-
terized by a flake morphology, the average size of which was 21.85 µm. However, in the
case of Ni and WC the powders are characterized by an irregular morphology; their sizes
were 0.64 µm and 3.17 µm, respectively.
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The SEM microphotograph of the NiAl powder after 10 h MA is shown in Figure 5.
This powder was characterized by a large irregularity in the shape and dimensions of the
particles, the average size of which was 2.05 µm; the standard deviation is 0.83 µm.
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Figure 5. SEM microphotographs of NiAl powder after 10 h of MA.

3.1.2. Synthesis of NiAl-WC Composite Systems

Figure 6 shows the XRD patterns of the powders after 10 h of mechanical alloying
for various WC contents. After the process, the composite systems contain NiAl, WC
phases and a small amount of W2C. However, the W2C phase occurs only in the powder
composition. The phase recedes after the sintering process. The formation of the W2C
phase after the mechanical alloying process means that during grinding the WC is depleted
of carbon, which diffuses into the defective NiAl phase. During sintering, recrystallization
of the phases and re-diffusion of carbon into the WC phase take place.

Willamson–Hall analysis was also carried out for the composite powders. The obtained
results are presented in Figure 7 and Table 3. The size of the crystallites was determined for
the peaks originating from the WC phase. Due to the coverage of most of the NiAl phase
peaks by the WC phase peaks, some of the peaks were not included in the analysis. The
size of the crystallites ranged from 21 mm to 38 mm after 10 h of milling. It can be noticed
that the intensity of fragmentation of the NiAl phase increases with the increase in the
content of the reinforcement phase. Analyzing the 44.638◦ peak of the NiAl phase with the
highest intensity, it can be seen that its half-width increases from 1.375◦ for 0% WC to 1.85◦

for 60% WC; for higher WC contents the parameter cannot be measured.

Table 3. Estimated size and strain factors based on Williamson–Hall plots for NiAl-xWC powders
after 10 h of mechanical alloying.

Powder Composition ε D [nm]

NiAl + 10% WC 0.0051 28
NiAl + 20% WC 0.0025 32
NiAl + 40% WC 0.0034 39
NiAl + 60% WC 0.0052 23
NiAl + 80% WC 0.0070 29
NiAl + 90% WC 0.0077 21



Materials 2023, 16, 2048 8 of 15

Materials 2023, 16, x FOR PEER REVIEW 8 of 15 
 

 

phase with the highest intensity, it can be seen that its half-width increases from 1.375° for 
0% WC to 1.85° for 60% WC; for higher WC contents the parameter cannot be measured. 

SEM microphotographs of the NiAl-WC composite powders are shown in Figure 8. 
All compositions are characterized by irregular particle shapes. Moreover, it can be ob-
served that the tendency of the powders to agglomerate increased as the WC content in-
creased. The average powder particle size was measured from SEM micrographs and is 
presented in Table 4. The greatest fragmentation of the powder particles was obtained for 
the NiAl-10WC composition, while the NiAl-80WC powder was characterized by the 
greatest tendency to agglomerate. 

 
Figure 6. XRD patterns of NiAl (a), NiAl-10WC (b), NiAl-20WC (c), NiAl-40WC (d), NiAl-60WC 
(e), NiAl-80WC (f) and NiAl-90WC (g) powders after 10 h of MA. 

Table 3. Estimated size and strain factors based on Williamson–Hall plots for NiAl-xWC powders 
after 10 h of mechanical alloying. 

Powder Composition ε D [nm] 
NiAl + 10% WC 0.0051 28 
NiAl + 20% WC 0.0025 32 
NiAl + 40% WC 0.0034 39 
NiAl + 60% WC 0.0052 23 
NiAl + 80% WC 0.0070 29 
NiAl + 90% WC 0.0077 21 

Figure 6. XRD patterns of NiAl (a), NiAl-10WC (b), NiAl-20WC (c), NiAl-40WC (d), NiAl-60WC (e),
NiAl-80WC (f) and NiAl-90WC (g) powders after 10 h of MA.

Materials 2023, 16, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. Linear Williamson–Hall plots with an obtained equation based on the XRD spectra of 
NiAl-xWC powder after 10 h of mechanical alloying. 

 
Figure 8. SEM microphotograph of NiAl-10WC (a), NiAl-20WC (b), NiAl-40WC (c), NiAl-60WC 
(d), NiAl-80WC (e) and NiAl-90WC (f) powders after 10 h of MA. 

Table 4. Average particle size of powders measured based on SEM microphotographs. 

Powder Composition Average Powder Particle Size [µm] Standard Deviation [µm] 
Al 21.85 13.16 
Ni 0.64 0.34 

WC 3.17 1.13 
NiAl 2.05 0.83 

NiAl + 10% WC 1.13 0.68 
NiAl + 20% WC 1.45 0.63 
NiAl + 40% WC 1.76 0.99 
NiAl + 60% WC 2.29 0.96 
NiAl + 80% WC 3.10 1.83 
NiAl + 90% WC 1.75 0.63 

  

Figure 7. Linear Williamson–Hall plots with an obtained equation based on the XRD spectra of
NiAl-xWC powder after 10 h of mechanical alloying.

SEM microphotographs of the NiAl-WC composite powders are shown in Figure 8. All
compositions are characterized by irregular particle shapes. Moreover, it can be observed
that the tendency of the powders to agglomerate increased as the WC content increased.
The average powder particle size was measured from SEM micrographs and is presented in
Table 4. The greatest fragmentation of the powder particles was obtained for the NiAl-10WC
composition, while the NiAl-80WC powder was characterized by the greatest tendency
to agglomerate.
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Table 4. Average particle size of powders measured based on SEM microphotographs.

Powder Composition Average Powder Particle Size [µm] Standard Deviation [µm]

Al 21.85 13.16
Ni 0.64 0.34

WC 3.17 1.13
NiAl 2.05 0.83

NiAl + 10% WC 1.13 0.68
NiAl + 20% WC 1.45 0.63
NiAl + 40% WC 1.76 0.99
NiAl + 60% WC 2.29 0.96
NiAl + 80% WC 3.10 1.83
NiAl + 90% WC 1.75 0.63

3.2. Structural and Microstructural Analysis of Bulk Composites

Phase analysis after the sintering process at 800 ◦C and 1100 ◦C is shown in Figure 9.
After the hot-pressing process, regardless of the temperature, the composites consisted of
NiAl and WC phases. A comparable phase composition was achieved in work [2] after
thermal stabilization of the NiAl-WC system, where the powder composition of NiAl-WC
after 40 h of milling was annealed at 1100 ◦C for 1 h.

XRD analysis revealed that the lower sintering temperature results in limited diffusion
of components, which reduces grain growth. In particular, the discrepancy between
temperatures starts to be apparent for compositions from 40% WC content as a broadening
of peaks. This relationship is also observed in SEM microphotographs (Figure 10).

SEM analysis revealed the influence of composition and temperature on the system’s
ability to recrystallize and consolidate. The first differences in the morphological structure
of the system are noticeable for 60% WC, while for 80% WC they are significant. Changes
in microstructure mainly concern the grain morphology of the WC phase and its size
range. Differences can be found, firstly, between the temperature of sintering, and secondly,
between individual compositions.

For the higher sintering temperature (1100 ◦C), an increase in the content of the WC
additive between 40% and 60% transforms the morphological character of the reinforcement
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phase. For 60% of WC, the morphology of the grains begins to have a polygonal shape;
the trend continues with the increase in WC content. In addition, for 80% and 90%, there
is a strong grain growth of WC reinforcement phase. The structure of WC grains in
systems with a high additive content coagulates, decreasing in the same dispersion of the
reinforcing phase.
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The microstructure of the obtained composites is also affected by the lower (800 ◦C)
consolidation temperature for systems above 60% WC. Visible porosity at the boundaries
of the consolidated powder particles as well as intermetallic matrix phase separation could
be distinguished. For applied higher temperature regimes, porosity appears at the phase
grain boundary region, which suggests its movement. Composites sintered at 800 ◦C are
characterized by a much finer grain compared to those sintered at a higher temperature;
the dispersion reinforcement mechanism stays dominant. This proves that the energy of
the system for recrystallization could be too low for diffusion, which is blocked.

An increase in sintering temperature allows the diffusion of components and a high
level of structure strain leads to observed grain growth. However, this relation only occurs
with a high content of the WC additive. The increase in temperature at contents below 40%
does not affect the change in morphology and the growth of WC phase, indirectly pointing
to the relation between the structure strain level and the analyzed composition.

The relationship between the composition and the tendency to evaluate the structure
can be found in the stress state of powder systems after mechanical synthesis. As the WC
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content increases, the stresses in the structure increase (see Table 4) from 0.0051 for 10% to
0.77 for 90%. The increase in stress translates into lower energy needed to initiate active
recrystallization and grain growth; however, for the lower sintering temperature it may be
blocked by the growing reinforcement phase amount.
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Following the structural calculation, the estimated phase amounts (PA) collated in
Table 5 show a close relation to the planimetric analysis and initial compositions. The
results, confirmed with a goodness of fit parameter (GOF), show lower reinforcement
phase amounts for lower sintering temperatures until the relationship reaches 40 wt.%
of WC. Higher amounts of reinforcing phase in precursor powders result in its growing
relationship with higher sintering temperature for the obtained sinters.



Materials 2023, 16, 2048 12 of 15

Table 5. Structural phase parameters and amounts determined by the Rietveld method collated with
the planimetric phase estimation.

Sample
NiAl WC

Rwp [%] Rexp [%] GOF
Planimetric

NiAl
Content [%]a [Å] V [Å] PA [%] a [Å] c [Å] V [Å] PA [%]

NiAl-800 2.877748 23.83189 100 - - - - 2.79074 1.26216 3.45235 -
NiAl-1100 2.881795 23.93257 100 - - - - 3.52871 1.53387 4.15852 -

10–800 2.877455 23.82459 91.4 2.905589 2.837235 20.74408 8.6 3.88914 1.64960 3.72663 -
10–1100 2.876814 23.80868 94.0 2.904611 2.836464 20.72449 6.0 3.20058 1.66355 2.99967 90.2
20–800 2.878794 23.85789 82.0 2.905391 2.835926 20.73169 18.0 3.04924 1.72062 2.80676 -

20–1100 2.879063 23.86455 82.5 2.906711 2.836687 20.75611 17.5 3.80800 1.69231 3.69920 82.0
40–800 2.883199 23.96756 59.7 2.907169 2.837852 20.77116 40.3 3.78441 1.89541 2.88086 -

40–1100 2.885629 24.02822 59.5 2.910031 2.839636 20.82517 40.5 3.87954 1.92495 3.08873 65.1
60–800 2.884665 24.00413 42.9 2.905388 2.836926 20.73895 57.1 4.58649 2.15801 2.76792 -

60–1100 2.889674 24.12940 35.9 2.911327 2.839604 20.84349 64.1 4.94694 2.24004 3.37547 53.3
80–800 - - - - - - - - - - -

80–1100 2.891775 24.18207 14.3 2.911662 2.839584 20.84814 85.7 6.816 2.69761 3.23206 22.5
90–800 - - - - - - - - - - -

90–1100 2.890064 24.13917 13.2 2.910384 2.839364 20.82823 86.8 7.65265 2.73152 3.37985 11.7
Ref. WC - - - 2.9063 2.8375 20.76 - - - - -
Ref. NiAl 2.8855 24.02 - - - - - - - - -

3.3. Hardness and Density of NiAl-WC Composites

Hardness test results are presented in Table 6 and Figure 11. In the case of samples
sintered at 800 ◦C, the hardness increased up to 80% WC content, followed by a decrease
for 90% WC. The decrease in hardness is caused by the increase in porosity for higher
contents of the reinforcing phase. In the case of samples sintered at 1100 ◦C, the hardness
increased up to 90% WC. Moreover, it can be observed that samples sintered at 800 ◦C are
characterized by a higher hardness up to 60% WC. This is due to the strengthening of grain
boundaries. Above 60% WC, the hardness is more favorable for sinters at 1100 ◦C, where
porosity starts to affect the result.

Table 6. Vickers hardness (HV), calculated density (ßcal) and theoretical density (ßth) of sinters.

NiAl NiAl + 10WC NiAl + 20WC NiAl + 40WC NiAl + 60WC NiAl + 80WC NiAl + 90WC

800 ◦C
HV 652 ± 5 792 ± 21 797 ± 41 799 ± 59 967 ± 63 1218 ± 237 953 ± 93

ßcal [g/cm3] 5.81 6.02 6.17 7.73 7.88 9.62 10.45

1100 ◦C
HV 409 ± 4 542 ± 11 603 ± 16 736 ± 59 912 ± 63 1539 ± 93 1800 ± 79

ßcal [g/cm3] 5.69 6.20 6.56 7.65 8.75 11.37 12.49

ßth [g/cm3] 5.27 5.64 6.08 7.17 8.75 11.22 13.06

Comparing the calculated densities with the theoretical ones in Table 6, it can be seen
that the calculated densities are in most cases higher than the theoretical ones. This is due
to the limitations of the analytical method based on the rule of the mixtures, which takes
into account the content of individual components and their density. However, it is used to
indicate the trend of density changes depending on the content of the reinforcing phase.

Density values for samples sintered at 800 ◦C and 1100 ◦C are comparable up to 40%
of WC phase. A further increase in the carbide content causes a decrease in density below
the theoretical one for systems sintered at 800 ◦C. At the sintering temperature of 1100 ◦C,
the density values are close to the theoretical ones (see Figure 12 and Table 6).

For systems with a WC phase content of up to 40%, the best set of properties was
obtained with a sintering temperature of 800 ◦C. The sinters are characterized by fine grain
in the submicron range, high hardness and high density. The increase in the content of
WC phase above 40% forces the use of higher sintering temperatures to obtain sinters with
higher density, which translates into an increase in their hardness.
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4. Conclusions

In this work, composites based on NiAl intermetallic phase with various WC contents
were synthesized using a mechanical alloying process and a hot-pressing approach. Based
on the conducted research, the following conclusions can be drawn:

- The mechanical alloying process allows the synthesis of intermetallic phase from pure
Al and Ni elements. After 5 h of milling, a new phase appeared in composition;

- The addition of WC phase did not affect the formation of NiAl intermetallic phase;
- The addition of WC increased the intensity of the milling process respective to the

analyzed structure strain level;
- After the hot-pressing process, the phase composition of composites consists of NiAl

and WC phases;
- The reinforcing phase amount and final structure properties strongly depend on the

initial composition, its structural state and applied sintering conditions influencing
the dominative reinforcement mechanism;

- The microstructure of the obtained composites shows an ultrafine-grain range;
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- The composites are characterized by elevated hardness, which reached 1800 HV for
sample 90–1100.
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