Properties, Applications and Toxicities of Organotrialkoxysilane-Derived Functional Metal Nanoparticles and Their Multimetallic Analogues
1. Introduction
2. Functional Organotrialkoxysilane-Derived Biocompatible Organically Modified Silicate Thin Films
3. Reactive Organotrialkoxysilane-Derived Metal Organic Framework in Nanostructured Network of Organically Modified Silicate
4. Reactive Organotrialkoxysilane-Mediated Synthesis of Processable Monometallic, Bimetallic and Trimetallic Noble Metal Nanoparticles
5. Reactive Organotrialkoxysilane-Derived Self-Assembling Siloxane–Nanoparticle Nanofluid
6. Synthetic Insertion of Metal Nanoparticles and Their Cheaper Transition Metal Analogues within Mesoporous Matrix for Excitable Technical Applications
7. Reactive Organotrialkoxysilane-Derived Fluorescent Nanoparticles
8. Toxicities of Organotrialkoxysilane-Derived Functional Nanomaterials
Conflicts of Interest
References
- Schmidt, H.; Scholze, H.; Kaiser, A. Principles of hydrolysis and condensation reaction of alkoxysilanes. J. Non-Cryst. Solids 1984, 63, 1–11. [Google Scholar] [CrossRef]
- Boonstra, A.H.; Mulder, C.A.M. Effect of hydrolytic polycondensation of tetraethoxysilane on specific surface area of SiO2 gels. J. Non-Cryst. Solids 1988, 105, 201–206. [Google Scholar] [CrossRef]
- Pandey, P.C. Reactive Organotrialkoxysilanes and Their Role in Designing Nanostructured. Materials for potential biosensing applications. SMC Bull. 2021, 12, 115–127. Available online: https://www.smcindia.org/pdf/SMC%20Bulletin-December2021%20%20Volume%2012%20%20No.pdf%20-%20Col.pdf (accessed on 1 January 2023).
- Degani, Y.; Heller, A. Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme. J. Phys. Chem. 1987, 91, 1285–1289. [Google Scholar] [CrossRef]
- Philippe, S. Nanoparticles in Ancient Materials: The Metallic Lustre Decorations of Medieval Ceramics; IntechOpen: London, UK, 2012. [Google Scholar]
- Leonhardt, U. Invisibility cup. Nature Photon. 2007, 1, 207–208. [Google Scholar] [CrossRef]
- Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The Lycurgus Cup—A Roman nanotechnology. Gold Bull. 2007, 40, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Daniel, M.C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Otsuka, I.; Osaka, M.; Sakai, Y.; Travelet, C.; Putaux, J.L.; Borsali, R. Self-Assembly of Maltoheptaose-block-Polystyrene into Micellar Nanoparticles and Encapsulation of Gold Nanoparticles. Langmuir 2013, 29, 15224–15230. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.; Milner, J.; Mary, D.; Kuppan, B.; Carl, G.; Cerniglia, E.; Khare, S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology 2015, 9, 279–289. [Google Scholar] [CrossRef]
- Thompson, D. Michael Faraday’s recognition of ruby gold: The birth of modern nanotechnology. Gold Bull. 2007, 40, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994, 7, 801–802. [Google Scholar] [CrossRef]
- Martin, M.N.; Basham, J.I.; Chando, P.; Eah, S.K. Charged Gold Nanoparticles in Non-Polar Solvents: 10-min Synthesis and 2D Self-Assembly. Langmuir 2010, 26, 7410–7417. [Google Scholar] [CrossRef] [PubMed]
- Leff, D.V.; Brandt, L.; Heath, J.R. Synthesis and characterization of hydrophobic, organically-soluble gold nanocrystals functionalized with primary amines. Langmuir 1996, 12, 4723–4730. [Google Scholar] [CrossRef]
- Gomez, S.; Philippot, K.; Collière, V.; Chaudret, B.; Senocq, F.; Lecante, P. Gold nanoparticles from self-assembled gold(i) amine precursors. Chem. Commun. 2000, 19, 1945–1946. [Google Scholar] [CrossRef]
- Anil, K.; Xu, Z.; Liang, X.-J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013, 31, 593–606. [Google Scholar]
- Aslam, M.; Fu, L.; Su, M.; Vijayamohanan, K.; Dravid, V.P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. J. Mater. Chem. 2004, 14, 1795–1797. [Google Scholar] [CrossRef]
- Newman, J.D.S.; Blanchard, G.J. Formation of gold nanoparticles using amine reducing agents. Langmuir 2006, 22, 5882–5887. [Google Scholar] [CrossRef]
- Bhargava, S.K.; Booth, J.M.; Agrawal, S.; Coloe, P.; Kar, G. Gold Nanoparticle Formation during Bromoaurate Reduction by Amino Acids. Langmuir 2005, 21, 5949–5956. [Google Scholar] [CrossRef]
- Selvakannan, P.R.; Kumar, P.S.; More, A.S.; Shingte, R.D.; Wadgaonkar, P.P.; Sastry, M. One Pot, Spontaneous and Simultaneous Synthesis of Gold Nanoparticles in Aqueous and Nonpolar Organic Solvents Using a Diamine-Containing Oxyethylene Linkage. Langmuir 2004, 20, 295–298. [Google Scholar] [CrossRef]
- Isaacs, S.R.; Cutler, E.C.; Park, J.S.; Lee, T.R.; Shon, Y.S. Synthesis of Tetraoctylammonium-Protected Gold Nanoparticles with Improved Stability. Langmuir 2005, 21, 5689–5692. [Google Scholar] [CrossRef] [PubMed]
- Kotiaho, A.; Lahtinen, R.; Efimov, A.; Lehtivuori, H.; Tkachenko, N.V.; Kanerva, T.; Lemmetyinen, H. Synthesis and time-resolved fluorescence study of porphyrin-functionalized gold nanoparticles. J. Photochem. Photobiol. A Chem. 2010, 212, 129–134. [Google Scholar] [CrossRef]
- Duan, H.; Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412–2413. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Kuang, M.; Shen, Z.; Nieberle, J.; Duan, H.; Frey, H. Gold Nanoparticles Coated with a Thermosensitive Hyperbranched Polyelectrolyte: Towards Smart Temperature and pH Nanosensors. Angew. Chem. 2008, 120, 2259–2262. [Google Scholar] [CrossRef]
- Zhu, H.; Pan, Z.; Hagaman, E.W.; Liang, C.; Overbury, S.H.; Dai, S. Facile one-pot synthesis of gold nanoparticles stabilized with bifunctional amino/siloxy ligands. J. Colloid. Interface Sci. 2005, 287, 360–365. [Google Scholar] [CrossRef]
- Huang, S.; Minami, K.; Sakaue, H.; Shingubara, S.; Takahagi, T. Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions. J. Appl. Phys. 2002, 92, 7491. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandey, P.C. Properties, Applications and Toxicities of Organotrialkoxysilane-Derived Functional Metal Nanoparticles and Their Multimetallic Analogues. Materials 2023, 16, 2052. https://doi.org/10.3390/ma16052052
Pandey PC. Properties, Applications and Toxicities of Organotrialkoxysilane-Derived Functional Metal Nanoparticles and Their Multimetallic Analogues. Materials. 2023; 16(5):2052. https://doi.org/10.3390/ma16052052
Chicago/Turabian StylePandey, Prem C. 2023. "Properties, Applications and Toxicities of Organotrialkoxysilane-Derived Functional Metal Nanoparticles and Their Multimetallic Analogues" Materials 16, no. 5: 2052. https://doi.org/10.3390/ma16052052
APA StylePandey, P. C. (2023). Properties, Applications and Toxicities of Organotrialkoxysilane-Derived Functional Metal Nanoparticles and Their Multimetallic Analogues. Materials, 16(5), 2052. https://doi.org/10.3390/ma16052052