First Principles Calculation of Adsorption of Water on MgO (100) Plane
Abstract
:1. Introduction
2. Methods and Models
2.1. DFT Calculation Method and Parameters
2.2. Calculation of Adhesion Energy and Selection of Crystal Face
2.3. Establishment and Optimization of Model
2.4. Calculation of Adsorption Energy
3. Results and Discussion
3.1. Adsorption of Monomolecular Water on Crystal Plane (100) of MgO
3.2. Adsorption of Multimolecular Water on Crystal Plane (100) of MgO
4. Conclusions
- On the MgO (100) plane, the adsorption energy of monomolecular water with different adsorption sites and adsorption orientations demonstrates little change, ranging from −45 to −60 kJ/mol. The adsorption orientation and sites have no obvious influence on the adsorption configuration. The adsorption of monomolecular water on O site, Mg site, bridge and hollow is unstable, with no obvious active sites and almost no charge transfer, belonging to the physical adsorption. The adsorption of monomolecular water on MgO (100) plane will not lead to the dissociation of water molecule;
- The adsorption energy increases with the increase in coverage of water molecules. When the coverage exceeds 1, the second layer adsorption occurs. When the coverage of water molecules is 1 or higher, water molecules will dissociate, and the population value between Mg and Os-H will increase, leading to the formation of ionic bond. Os-H forms stable surface hydroxyl groups, and the density of states of O p orbital electrons changes greatly, which plays an important role in surface dissociation and stabilization, also a part of the hydration process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yur’ev, A.B.; Komshukov, V.P.; Marakulin, Y.A.; Presnyakov, A.P. Increasing the endurance of the converter lining. Refract. Ind. Ceram. 2004, 45, 309–311. [Google Scholar] [CrossRef]
- Aksel’rod, L.M.; Laptev, A.P.; Shlyapin, A.A. Refractory materials and methods for increasing the life of converter linings from experience of OOO Gruppa Magnezit. Refract. Ind. Ceram. 2008, 49, 1–4. [Google Scholar] [CrossRef]
- Osipov, V.A.; Kungurtsev, V.N.; Stepanova, E.V.; Timofeeva, Z.G.; Bosyakova, N.A. Composition and Fabrication of Magnesia Briquettes from Refractory Scrap for Repairing the Lining of Oxygen Converters. Refract. Ind. Ceram. 2005, 46, 87–88. [Google Scholar] [CrossRef]
- Horita, S.; Kaneshige, T.; Takenaka, H. High performance quick hardening hot casting material for B.O.F; Tenroyo kotaiyo jinsoku yakitsukezai. Taikabutsu Refract. 1999, 51, 131–136. [Google Scholar]
- Zhang, T.; Cheeseman, C.; Vandeperre, L. Development of low pH cement systems forming magnesium silicate hydrate (MSH). Cem. Concr. Res. 2011, 41, 439–442. [Google Scholar] [CrossRef]
- Szczerba, J.; Prorok, R.; Śnieżek, E.; Madej, D.; Maślona, K. Influence of time and temperature on ageing and phases synthesis in the MgO–SiO2–H2O system. Thermochim. Acta 2013, 567, 57–64. [Google Scholar] [CrossRef]
- Nobre, J.; Ahmed, H.; Bravo, M.; Evangelista, L.; De Brito, J. Magnesia (MgO) Production; Characterization, and Its Influence on the Performance of Cementitious Materials: A Review. Materials 2020, 13, 4752. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Hu, Y.; Song, Q.; Nie, J.; Su, J.; Chen, Y. Effect of Curing Temperature on the Properties of a MgO-SiO2-H2O System Prepared Using Dead-Burned MgO. Materials 2022, 15, 6065. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, Y.; Liu, H.; Zhang, J.; Wei, J.; Yu, Q. Effect of the MgO/Silica Fume Ratio on the Reaction Process of the MgO-SiO2-H2O System. Materials 2018, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Xu, Y.; Zhang, T.; Hu, J.; Wei, J.; Yu, Q. Effect of MgO calcination temperature on the reaction products and kinetics of MgO-SiO2-H2O system. J. Am. Ceram. Soc. 2019, 102, 3269–3285. [Google Scholar] [CrossRef]
- Bassioni, G.; Farid, R.; Mohamed, M.; Hammouda, R.M.; Kühn, F.E. Effect of different parameters on caustic magnesia hydration and magnesium hydroxide rheology: A review. Mater. Adv. 2021, 2, 6519–6531. [Google Scholar] [CrossRef]
- Li, Z.; Yu, Q.; Chen, X.; Liu, H.; Zhang, J.; Zhang, J.; Yang, Y.; Wei, J. The role of MgO in the thermal behavior of MgO–silica fume pastes. J. Therm. Anal. Calorim. 2017, 127, 1897–1909. [Google Scholar] [CrossRef]
- Chen, J.; Li, T.; Li, X.; Chou, K.-C.; Hou, X. Some New Perspective on the Reaction Mechanism of MgO-SiO2-H2O System. Int. J. Appl. Ceram. Technol. 2016, 13, 1164–1172. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Dai, Y.; Liu, J.; Xu, Y. Hydration evolution of MgO-SiO2 slurries in the presence of sodium metasilicate. Ceram. Int. 2018, 44, 6626–6633. [Google Scholar] [CrossRef]
- Amaral, L.; Oliveira, I.; Bonadia, P.; Salomão, R.; Pandolfelli, V.C. Chelants to inhibit magnesia (MgO) hydration. Ceram. Int. 2011, 37, 1537–1542. [Google Scholar] [CrossRef]
- Kurosawa, R.; Takeuchi, M.; Ryu, J. Fourier-transform infrared and X-ray diffraction analyses of the hydration reaction of pure magnesium oxide and chemically modified magnesium oxide. RSC Adv. 2021, 11, 24292–24311. [Google Scholar] [CrossRef]
- Kondo, A.; Kurosawa, R.; Ryu, J.; Matsuoka, M.; Takeuchi, M. Investigation on the Mechanisms of Mg(OH)2 Dehydration and MgO Hydration by Near-Infrared Spectroscopy. J. Phys. Chem. C 2021, 125, 10937–10947. [Google Scholar] [CrossRef]
- Durán, T.; Pena, P.; De Aza, S.; Gómez-Millán, J.; Alvarez, M.; De Aza, A.H. Interactions in Calcium Aluminate Cement (CAC)-Based Castables Containing Magnesia. Part I: Hydration-Dehydration Behavior of MgO in the Absence of CAC. J. Am. Ceram. Soc. 2011, 94, 902–908. [Google Scholar] [CrossRef]
- Ding, Z.; Selloni, A. Hydration structure of flat and stepped MgO surfaces. J. Chem. Phys. 2021, 154, 114708. [Google Scholar] [CrossRef]
- Wang, L.; Lu, X.; Liu, L.; Xiao, J.; Zhang, G.; Guo, F.; Li, L. Influence of MgO on the Hydration and Shrinkage Behavior of Low Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis. Fractal Fract. 2022, 6, 40. [Google Scholar] [CrossRef]
- Chizallet, C.; Costentin, G.; Lauron-Pernot, H.; Krafft, J.M.; Bazin, P.; Saussey, J.; Delbecq, F.; Sautet, P.; Che, M. Role of hydroxyl groups in the basic reactivity of MgO: A theoretical and experimental study. Oil Gas Sci. Technol. 2006, 61, 479–488. [Google Scholar] [CrossRef] [Green Version]
- González, R.; Monge, M.A.; Santiuste, J.E.M.; Pareja, R.; Chen, Y.; Kotomin, E.; Kukla, M.M.; Popov, A.I. Photoconversion of F-type centers in thermochemically reduced MgO single crystals. Phys. Rev. B 1999, 59, 4786–4790. [Google Scholar] [CrossRef] [Green Version]
- Supin, K.; Saji, A.; Chanda, A.; Vasundhara, M. Effects of calcinations temperatures on structural, optical and magnetic properties of MgO nanoflakes and its photocatalytic applications. Opt. Mater. 2022, 132, 112777. [Google Scholar]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B Condens. Matter 1990, 41, 7892–7895. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical hybrid density functional with perturbative second-order correlation. J. Chem. Phys. 2006, 124, 034108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W.; Liu, X. Hou, S.; Wang, X. Study on micro-nanocrystalline structure control and performance of ZnWO4 photocatalysts. Catal. Sci. Technol. 2019, 9, 1141–1153. [Google Scholar] [CrossRef]
- Constance, E.N.; Mohammed, M.; Mojibola, A.; Egiefameh, M.; Daodu, O.; Clement, T.; Ogundolie, T.; Nwawulu, C.; Aslan, K. Effect of Additives on the Crystal Morphology of Amino Acids: A Theoretical and Experimental Study. J. Phys. Chem. C 2016, 120, 14749–14757. [Google Scholar] [CrossRef]
- Schmidt, C.; Ulrich, J. Predicting Crystal Morphology Grown from Solution. Chem. Eng. Technol. 2012, 35, 1009–1012. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Alvim, R.S.; Borges, I., Jr.; Costa, D.G.; Leitao, A.A. Density-functional theory simulation of the dissociative chemisorption of water molecules on the MgO (001) surface. J. Phys. Chem. C 2012, 116, 738–744. [Google Scholar] [CrossRef]
- Chen, M.; Felmy, A.R.; Dixon, D.A. Structures and Stabilities of (MgO)n Nanoclusters. J. Phys. Chem. A 2014, 118, 3136–3146. [Google Scholar] [CrossRef] [PubMed]
- Geneste, G.; Morillo, J.; Finocchi, F. Adsorption and diffusion of Mg, O, and O2 on the MgO(001) flat surface. J. Chem. Phys. 2005, 122, 174707. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, L.; Dong, L.; Zhang, H.; Huang, Z.; Li, F.; Zhang, S. Hydration behavior of MgO surface: A first-principles study. Appl. Surf. Sci. 2023, 611, 155441. [Google Scholar] [CrossRef]
- Ončák, M.; Włodarczyk, R.; Sauer, J. Water on the MgO(001) Surface: Surface Reconstruction and Ion Solvation. J. Phys. Chem. Lett. 2015, 6, 2310–2314. [Google Scholar] [CrossRef]
- Krukowski, S.; Kempisty, P.; Strąk, P. Fermi level influence on the adsorption at semiconductor surfaces—Ab initio simulations. J. Appl. Phys. 2013, 114, 063507. [Google Scholar] [CrossRef] [Green Version]
- Kempisty, P.; Strak, P.; Sakowski, K.; Krukowski, S. Thermodynamics of GaN(s)-NH3(v)+ N2(v)+ H2(v) system–Electronic aspects of the processes at GaN(0001) surface. Surf. Sci. 2017, 662, 12–33. [Google Scholar] [CrossRef]
- De Leeuw, N.H.; Purton, J.A. Density-functional theory calculations of the interaction of protons and water with low-coordinated surface sites of calcium oxide. Phys. Rev. B 2001, 63, 195417. [Google Scholar] [CrossRef]
- Manzano, H.; Pellenq, R.J.M.; Ulm, F.-J.; Buehler, M.J.; Van Duin, A.C.T. Hydration of Calcium Oxide Surface Predicted by Reactive Force Field Molecular Dynamics. Langmuir 2012, 28, 4187–4197. [Google Scholar] [CrossRef]
- Fujimori, Y.; Zhao, X.; Shao, X.; Levchenko, S.V.; Nilius, N.; Sterrer, M.; Freund, H.-J. Interaction of Water with the CaO(001) Surface. J. Phys. Chem. C 2016, 120, 5565–5576. [Google Scholar] [CrossRef]
Crystal Plane | Elattice (Kcal/mol) | Esection (Kcal/mol) | Eadhesion (Kcal/mol) |
---|---|---|---|
(100) | −3623.48 | −3567.54 | −55.93 |
(110) | −3460.72 | −162.75 | |
(111) | −1385.16 | −2238.31 | |
(210) | −3411.06 | −212.41 | |
(310) | −3355.97 | −267.50 |
Sites and Orientations | Bond Length on MgO (100) Plane (Å) | H2O Bond Length (Å) | Eads (kJ/mol) | |||
---|---|---|---|---|---|---|
dH-Os | dMg-Ow | dMg-H | dO-H1 | dO-H2 | ||
Mg site H parallel | 2.0 | 2.27 | - | 0.988 | 0.986 | −59.933 |
O site H parallel | 2.0 | 2.27 | - | 0.988 | 0.987 | −59.943 |
O site H parallel | 1.77 | 2.25 | 2.21 | 1.005 | 0.974 | −60.627 |
hollow H parallel | 1.75 | 2.24 | 2.21 | 1.007 | 0.974 | −60.616 |
hollow H parallel | 2.03 | 2.26 | 2.33 | 0.987 | 0.986 | −59.868 |
hollow H parallel | 1.79 | 2.25 | 2.22 | 1.003 | 0.975 | −60.586 |
bridge H parallel | 1.80 | 2.25 | 2.22 | 1.002 | 0.976 | −60.557 |
hollow H up | 1.75 | 2.25 | 2.21 | 1.007 | 0.974 | −60.617 |
bridge H up | 1.75 | 2.25 | 2.21 | 1.007 | 0.974 | −60.611 |
Mg site H up-down | 1.74 | 2.25 | - | 1.007 | 0.974 | −60.603 |
Mg site H up-down | 1.73 | 2.24 | - | 1.008 | 0.973 | −60.562 |
O site H up-down | 1.72 | 2.25 | - | 1.010 | 0.972 | −60.503 |
hollow H up-down | 1.94 | 2.27 | - | 0.992 | 0.983 | −60.048 |
hollow H up-down | 1.75 | 2.24 | - | 1.007 | 0.974 | −60.606 |
bridge H up-down | 1.76 | 2.24 | 2.20 | 1.006 | 0.974 | −60.624 |
bridge H up-down | 1.75 | 2.24 | 2.20 | 1.007 | 0.974 | −60.593 |
bridge H up-down | 1.74 | 2.24 | 2.20 | 1.008 | 0.974 | −60.595 |
Mg site H down | 1.99 | 2.27 | 2.32 | 0.989 | 0.988 | −59.907 |
bridge H down | 1.81 | 2.25 | 2.23 | 1.000 | 0.977 | −60.504 |
bridge H down | 1.74 | 2.24 | 2.20 | 1.008 | 0.974 | −60.588 |
Atom | s | p | Total | Charge (e) | Bond Population | Note |
---|---|---|---|---|---|---|
O | 1.85 | 5.13 | 6.98 | −0.98 | 0.26 | Before adsorption |
Mg | 2.38 | 6.59 | 8.97 | 1.03 | ||
O | 1.84 | 5.13 | 6.97 | −0.97 | 0.19 | After adsorption |
Mg | 2.36 | 6.57 | 8.93 | 1.07 |
Crystal Plane | Coverage | Eads (kJ/mol) |
---|---|---|
(100) | 0.25 | −61.632 |
0.50 | −143.904 | |
0.75 | −200.256 | |
1.00 | −338.784 | |
1.25 | −432.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Chen, H.; Feng, J.; Ma, Q.; Chen, J.; Ren, B.; Yin, S.; Jiang, P. First Principles Calculation of Adsorption of Water on MgO (100) Plane. Materials 2023, 16, 2100. https://doi.org/10.3390/ma16052100
Li B, Chen H, Feng J, Ma Q, Chen J, Ren B, Yin S, Jiang P. First Principles Calculation of Adsorption of Water on MgO (100) Plane. Materials. 2023; 16(5):2100. https://doi.org/10.3390/ma16052100
Chicago/Turabian StyleLi, Bin, Hongqiang Chen, Jisheng Feng, Qiao Ma, Junhong Chen, Bo Ren, Shu Yin, and Peng Jiang. 2023. "First Principles Calculation of Adsorption of Water on MgO (100) Plane" Materials 16, no. 5: 2100. https://doi.org/10.3390/ma16052100
APA StyleLi, B., Chen, H., Feng, J., Ma, Q., Chen, J., Ren, B., Yin, S., & Jiang, P. (2023). First Principles Calculation of Adsorption of Water on MgO (100) Plane. Materials, 16(5), 2100. https://doi.org/10.3390/ma16052100