Acoustic Performance of Floors Made of Composite Panels
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Test Procedure
2.2. Samples and Materials
3. Airborne Sound Insulation, Results of Measurements and Discussion
3.1. Initial Survey Based on Small Elements
3.1.1. Standalone Panels
3.1.2. Double Set-Ups
3.2. Full-Scale Models
3.2.1. Single Panels
3.2.2. Double Set-Ups
3.2.3. Additional Insulating Layers
4. Impact Sound Insulation, Results of Measurements and Discussion
4.1. Initial Study Based on Small Samples of Flooring
4.2. Full-Scale Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Šujanová, P.; Rychtáriková, M.; Sotto Mayor, T.; Hyder, A.; Mayor, T.S.; Hyder, A. A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review. Energies 2019, 12, 1414. [Google Scholar] [CrossRef] [Green Version]
- Nowotny, Ł.; Nurzyński, J. Empirical study on the sound insulation of wooden lightweight frame floors. MATEC Web Conf. 2019, 282, 02008. [Google Scholar] [CrossRef]
- Nurzyński, J. Experimental study on the sound insulation of composite panels intended for use in a building. In Proceedings of the Inter-Noise 2010, 39th International Congress on Noise Control Engineering, Lisbon, Portugal, 13–16 June 2010; Sociedade Portuguesa de Acústica: Lisbon, Portugal, 2010; Volume 1, pp. 367–373. [Google Scholar]
- Garrido, M.; Madeira, J.F.A.; Proença, M.; Correia, J.R. Multi-objective optimization of pultruded composite sandwich panels for building floor rehabilitation. Constr. Build. Mater. 2019, 198, 465–478. [Google Scholar] [CrossRef]
- Tabatabaiefar, H.R.; Mansoury, B.; Khadivi Zand, M.J.; Potter, D. Mechanical properties of sandwich panels constructed from polystyrene/cement mixed cores and thin cement sheet facings. J. Sandw. Struct. Mater. 2017, 19, 456–481. [Google Scholar] [CrossRef]
- Wonderly, C.; Grenestedt, J.; Fernlund, G.; Cěpus, E. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Compos. Part B Eng. 2005, 36, 417–426. [Google Scholar] [CrossRef]
- Nilsson, E.; Nilsson, A.C. Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores. J. Sound Vib. 2002, 251, 409–430. [Google Scholar] [CrossRef]
- Nilsson, A.C.; Liu, B. Prediction of some vibro-acoustic properties of sandwich plates with honeycomb and foam cores. J. Acoust. Soc. Am. 2018, 144, 1600–1614. [Google Scholar] [CrossRef]
- Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Sobczyk, B.; Wilde, K. A novel sandwich footbridge—Practical application of laminated composites in bridge design and in situ measurements of static response. Compos. Part B Eng. 2017, 126, 153–161. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Pulido, M.D.G. Towards Advanced Composite Material Footbridges. Struct. Eng. Int. 2002, 12, 84–86. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C.; Wang, Y. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022, 293, 115719. [Google Scholar] [CrossRef]
- Li, C.; Guo, R.; Xian, G.; Li, H. Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fiber hybrid rod. Polym. Test. 2020, 90, 106761. [Google Scholar] [CrossRef]
- Feng, G.; Zhu, D.; Guo, S.; Rahman, M.Z.; Jin, Z.; Shi, C. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions. Cem. Concr. Compos. 2022, 134, 104758. [Google Scholar] [CrossRef]
- Wambua, P.; Ivens, J.; Verpoest, I. Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 2003, 63, 1259–1264. [Google Scholar] [CrossRef]
- Vitale, J.P.; Francucci, G.; Stocchi, A. Thermal conductivity of sandwich panels made with synthetic and vegetable fiber vacuum-infused honeycomb cores. J. Sandw. Struct. Mater. 2017, 19, 66–82. [Google Scholar] [CrossRef]
- Du, Y.; Yan, N.; Kortschot, M.T. Light-weight honeycomb core sandwich panels containing biofiber-reinforced thermoset polymer composite skins: Fabrication and evaluation. Compos. Part B Eng. 2012, 43, 2875–2882. [Google Scholar] [CrossRef]
- Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. Part B Eng. 2013, 54, 44–51. [Google Scholar] [CrossRef]
- Joshi, S.; Drzal, L..; Mohanty, A..; Arora, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos. Part A Appl. Sci. Manuf. 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Yeh, S.-K.; Hu, C.-R.; Rizkiana, M.B.; Kuo, C.-H. Effect of fiber size, cyclic moisture absorption and fungal decay on the durability of natural fiber composites. Constr. Build. Mater. 2021, 286, 122819. [Google Scholar] [CrossRef]
- Kaidouchi, H.; Kebdani, S.; Slimane, S.A. Vibro-acoustic analysis of the sound transmission through aerospace composite structures. Mech. Adv. Mater. Struct. 2022, 1–11. [Google Scholar] [CrossRef]
- Baral, N.; Cartié, D.D.R.; Partridge, I.K.; Baley, C.; Davies, P. Improved impact performance of marine sandwich panels using through-thickness reinforcement: Experimental results. Compos. Part B Eng. 2010, 41, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Sun, C.; An, F.; Liu, B. A bending stiffness criterion for sandwich panels with high sound insulation and its realization through low specific modulus layers. J. Sound Vib. 2022, 536, 117149. [Google Scholar] [CrossRef]
- Nilsson, A.C. Wave propagation in and sound transmission through sandwich plates. J. Sound Vib. 1990, 138, 73–94. [Google Scholar] [CrossRef]
- Moore, J.A.; Lyon, R.H. Sound transmission loss characteristics of sandwich panel constructions. J. Acoust. Soc. Am. 1991, 89, 777–791. [Google Scholar] [CrossRef]
- D’Alessandro, V.; Petrone, G.; Franco, F.; De Rosa, S. A review of the vibroacoustics of sandwich panels: Models and experiments. J. Sandw. Struct. Mater. 2013, 15, 541–582. [Google Scholar] [CrossRef]
- Mulholland, K.A.; Parbrook, H.D.; Cummings, A. The transmission loss of double panels. J. Sound Vib. 1967, 6, 324–334. [Google Scholar] [CrossRef]
- Wang, J.; Lu, T.J.; Woodhouse, J.; Langley, R.S.; Evans, J. Sound transmission through lightweight double-leaf partitions: Theoretical modelling. J. Sound Vib. 2005, 286, 817–847. [Google Scholar] [CrossRef]
- Lauriks, W.; Mees, P.; Allard, J.F. The acoustic transmission through layered systems. J. Sound Vib. 1992, 155, 125–132. [Google Scholar] [CrossRef]
- Villot, M.; Guigou, C.; Gagliardini, L. Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures. J. Sound Vib. 2001, 245, 433–455. [Google Scholar] [CrossRef]
- Price, A.J.; Crocker, M.J. Sound Transmission through Double Panels Using Statistical Energy Analysis. J. Acoust. Soc. Am. 1970, 47, 683–693. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, J.; Xiao, Y.; Wang, G.; Wen, X. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches. J. Sound Vib. 2015, 343, 104–120. [Google Scholar] [CrossRef]
- Li, S.; Xu, D.; Wu, X.; Jiang, R.; Shi, G.; Zhang, Z. Sound Insulation Performance of Composite Double Sandwich Panels with Periodic Arrays of Shunted Piezoelectric Patches. Materials 2022, 15, 490. [Google Scholar] [CrossRef] [PubMed]
- Hongisto, V. Sound Insulation of Double Panels—Comparison of Existing Prediction Models. Acta Acust. united with Acust. 2006, 92, 61–78. [Google Scholar]
- Patinha, S.; Cunha, F.; Fangueiro, R.; Rana, S.; Prego, F. Acoustical Behavior of Hybrid Composite Sandwich Panels. Key Eng. Mater. 2014, 634, 455–464. [Google Scholar] [CrossRef]
- Proença, M.; Neves e Sousa, A.; Garrido, M.; Correia, J.R. Acoustic performance of composite sandwich panels for building floors: Experimental tests and numerical-analytical simulation. J. Build. Eng. 2020, 32, 101751. [Google Scholar] [CrossRef]
- Hassan, O.A.B. Building Acoustics and Vibration—Theory and Practice; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2009; ISBN 13 978-283-833-9. [Google Scholar]
- Nurzyński, J. Sound insulation of bulkhead panels. Appl. Acoust. 2021, 179, 108061. [Google Scholar] [CrossRef]
Panel | Surface Mass | Total Thickness | Core Density | Surface Mass of a Single Face |
---|---|---|---|---|
kg/m2 | mm | kg/m3 | kg/m2 | |
m1/M1 | 9.7 | 60 | 40 | 3.8 |
m2/M2 | 11.6 | 35 | 40 | 5.3 |
m3/M3 | 10.1 | 35 | 70 | 4.1 |
m4 | 12.1 | 35 | 40 | 5.5 |
Small Samples | Full-Scale Models | ||
---|---|---|---|
Rw (C; Ctr) dB | Rw (C; Ctr) dB | ||
m1 | 27 (−2; −3) | M1 | 27 (−2; −4) |
m2 | 29 (−2; −2) | M2 | 28 (−2; −3) |
m3 | 28 (−1; −3) | M3 | 28 (−1; −4) |
m4 | 30 (−2; −3) | - | - |
Component Panels | Empty Cavity 30 mm Rw (C; Ctr) dB | Cavity 30 mm with Mineral Wool (MW) Rw (C; Ctr) dB | Cavity 100 mm with Mineral Wool (MW) Rw (C; Ctr) dB |
---|---|---|---|
m1-m1 | 39 (−1; −4) | 42 (−4; −9) | 52 (−4; −10) |
m2-m2 | 44 (−3; −7) | 49 (−4; −10) | 57 (−4; −10) |
M2-M2 | 31 (−1; −5) | 40 (−7; −16) | 49 (−7; −15) |
M3-M3 | 33 (−2; −6) | 39 (−6; −13) | 48 (−6; −14) |
m2-m3 | 40 (−2; −7) | 44 (−5; −11) | 52 (−4; −10) |
m4-m4 | 41 (−3; −7) | 51 (−4; −9) | 56 (−2; −8) |
Floor Configuration | Rw (C; Ctr), dB |
---|---|
M1 with a suspended ceiling C1x | 51 (−3; −10) |
M1 with a suspended ceiling C2x | 54 (−3; −10) |
M1 with a top insulating layer T1x | 51 (−6; −14) |
The Structure of the Floor System | Ln,w, dB | Rw (C; Ctr), dB |
---|---|---|
M1 | 84 | 27 (−2; −4) |
M1 with a dry floating screed (DFS) | 68 | 47 (−4; −11) |
M1 with a dry floating screed (DFS) and suspended ceiling (C1x) | 51 | 61 (−3; −10) |
M1 with a dry floating screed (DFS) and suspended ceiling (C2x) | 49 | 61 (−2; −7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurzyński, J.; Nowotny, Ł. Acoustic Performance of Floors Made of Composite Panels. Materials 2023, 16, 2128. https://doi.org/10.3390/ma16052128
Nurzyński J, Nowotny Ł. Acoustic Performance of Floors Made of Composite Panels. Materials. 2023; 16(5):2128. https://doi.org/10.3390/ma16052128
Chicago/Turabian StyleNurzyński, Jacek, and Łukasz Nowotny. 2023. "Acoustic Performance of Floors Made of Composite Panels" Materials 16, no. 5: 2128. https://doi.org/10.3390/ma16052128
APA StyleNurzyński, J., & Nowotny, Ł. (2023). Acoustic Performance of Floors Made of Composite Panels. Materials, 16(5), 2128. https://doi.org/10.3390/ma16052128