Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Governing Equations
2.2. Numerical Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, G.; Fu, J. Microfluidics for Cryopreservation. Biotechnol. Adv. 2017, 35, 323–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Moon, S.; Zhang, X.; Shao, L.; Song, Y.S.; Demirci, U. Multi-Scale Heat and Mass Transfer Modelling of Cell and Tissue Cryopreservation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 561–583. [Google Scholar] [CrossRef] [Green Version]
- Jang, T.H.; Park, S.C.; Yang, J.H.; Kim, J.Y.; Seok, J.H.; Park, U.S.; Choi, C.W.; Lee, S.R.; Han, J. Cryopreservation and Its Clinical Applications. Integr. Med. Res. 2017, 6, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, A. (Ed.) Crystallization Technology Handbook, 2nd ed.; Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-203-90828-0. [Google Scholar]
- Mullin, J.W. Crystallization, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2001; ISBN 978-0-08-053011-6. [Google Scholar]
- Tan, M.; Mei, J.; Xie, J. The Formation and Control of Ice Crystal and Its Impact on the Quality of Frozen Aquatic Products: A Review. Crystals 2021, 11, 68. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, G.; Chapal Hossain, S.M.; He, X. Modeling and Experimental Studies of Enhanced Cooling by Medical Gauze for Cell Cryopreservation by Vitrification. Int. J. Heat Mass Transf. 2017, 114, 1044–1056. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Z.; Liang, X.M.; Shu, Z.; Du, P.; Gao, D. Theoretical Investigations of a Novel Microfluidic Cooling/Warming System for Cell Vitrification Cryopreservation. Int. J. Heat Mass Transf. 2013, 65, 381–388. [Google Scholar] [CrossRef]
- Jungare, K.A.; Radha, R.; Sreekanth, D. Cryopreservation of Biological Samples—A Short Review. Mater. Today Proc. 2022, 51, 1637–1641. [Google Scholar] [CrossRef]
- Brockbank, K.G.M.; Chen, Z.Z.; Song, Y.C. Vitrification of Porcine Articular Cartilage. Cryobiology 2010, 60, 217–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnoon, P.; Ashkiyan, M. Magnetic Field Generation Due to the Microwaves by an Antenna Connected to a Power Supply to Destroy Damaged Tissue in the Liver Considering Heat Control. J. Magn. Magn. Mater. 2020, 513, 167245. [Google Scholar] [CrossRef]
- Shardt, N.; Al-Abbasi, K.K.; Yu, H.; Jomha, N.M.; McGann, L.E.; Elliott, J.A.W. Cryoprotectant Kinetic Analysis of a Human Articular Cartilage Vitrification Protocol. Cryobiology 2016, 73, 80–92. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhang, S.; Chen, G. Modeling the Addition/Removal of Dimethyl Sulfoxide into/from Articular Cartilage Treated with the Liquidus-Tracking Method. Int. J. Heat Mass Transf. 2019, 141, 719–730. [Google Scholar] [CrossRef]
- Lawson, A.; Mukherjee, I.N.; Sambanis, A. Mathematical Modeling of Cryoprotectant Addition and Removal for the Cryopreservation of Engineered or Natural Tissues. Cryobiology 2012, 64, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Yu, X.; Chen, G. Permeation of Dimethyl Sulfoxide into Articular Cartilage at Subzero Temperatures. J. Zhejiang Univ. Sci. B 2012, 13, 213–220. [Google Scholar] [CrossRef]
- Mukherjee, I.N.; Li, Y.; Song, Y.C.; Long, R.C.; Sambanis, A. Cryoprotectant Transport through Articular Cartilage for Long-Term Storage: Experimental and Modeling Studies. Osteoarthr. Cartil. 2008, 16, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Horiguchi, I.; Kino-oka, M.; Sugiyama, H. Slow Freezing Process Design for Human Induced Pluripotent Stem Cells by Modeling Intracontainer Variation. Comput. Chem. Eng. 2020, 132, 106597. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.; Xu, J.; Wei, Y.; Xu, X. Membrane Permeability of the Human Pluripotent Stem Cells to Me2SO, Glycerol and 1,2-Propanediol. Arch. Biochem. Biophys. 2014, 550–551, 67–76. [Google Scholar] [CrossRef]
- Casula, E.; Traversari, G.; Fadda, S.; Klymenko, O.V.; Kontoravdi, C.; Cincotti, A. Modelling the Osmotic Behaviour of Human Mesenchymal Stem Cells. Biochem. Eng. J. 2019, 151, 107296. [Google Scholar] [CrossRef]
- Fourier, J.B.J. Théorie Analytique de la Chaleur; Firmin Didot: Paris, France, 1882. [Google Scholar]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, C. Sulla Conduzione Del Calore. Atti Semin. Mat. Fis. Univ. Modena 1948, 3, 3–21. [Google Scholar]
- Cattaneo, C. A Form of Heat Conduction Equation Which Eliminates the Paradox of Instantaneous Propagation. Comptes Rendus 1958, 247, 431–433. [Google Scholar]
- Vernotte, P. Les Paradoxes de La Theorie Continue de l’equation de La Chaleur. Comptes Rendus 1958, 246, 3154–3155. [Google Scholar]
- Shi, M.; Feng, S.; Zhang, X.; Ji, C.; Xu, F.; Lu, T.J. Droplet Based Vitrification for Cell Aggregates: Numerical Analysis. J. Mech. Behav. Biomed. Mater. 2018, 82, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Mochnacki, B.; Majchrzak, E. Numerical Model of Thermal Interactions between Cylindrical Cryoprobe and Biological Tissue Using the Dual-Phase Lag Equation. Int. J. Heat Mass Transf. 2017, 108, 1–10. [Google Scholar] [CrossRef]
- Ahmadikia, H.; Moradi, A. Non-Fourier Phase Change Heat Transfer in Biological Tissues during Solidification. Heat Mass Transfer 2012, 48, 1559–1568. [Google Scholar] [CrossRef]
- Ge, M.Y.; Shu, C.; Yang, W.M.; Chua, K.J. Incorporating an Immersed Boundary Method to Study Thermal Effects of Vascular Systems during Tissue Cryo-Freezing. J. Therm. Biol. 2017, 64, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, S. Freezing of Biological Tissues During Cryosurgery Using Hyperbolic Heat Conduction Model. Math. Model. Anal. 2015, 20, 443–456. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, G.; Wang, T.; Yu, Q.; Su, M.; He, X. Three-Dimensional Numerical Simulation of the Effects of Fractal Vascular Trees on Tissue Temperature and Intracelluar Ice Formation during Combined Cancer Therapy of Cryosurgery and Hyperthermia. Appl. Therm. Eng. 2015, 90, 296–304. [Google Scholar] [CrossRef]
- Barnoon, P.; Bakhshandehfard, F. Thermal Management in a Biological Tissue in Order to Destroy Tissue under Local Heating Process. Case Stud. Therm. Eng. 2021, 26, 101105. [Google Scholar] [CrossRef]
- Song, Y.S.; Adler, D.; Xu, F.; Kayaalp, E.; Nureddin, A.; Anchan, R.M.; Maas, R.L.; Demirci, U. Vitrification and Levitation of a Liquid Droplet on Liquid Nitrogen. Proc. Natl. Acad. Sci. USA 2010, 107, 4596–4600. [Google Scholar] [CrossRef] [Green Version]
- Mochnacki, B.; Piasecka-Belkhayat, A. Numerical Modeling of Skin Tissue Heating Using the Interval Finite Difference Method. Mol. Cell. Biomech. 2013, 10, 233–244. [Google Scholar] [CrossRef]
- Piasecka-Belkhayat, A. Numerical Modelling of Solidification Process Using Interval Finite Difference Method. Sci. Res. Inst. Math. Comput. Sci. 2010, 9, 155–163. [Google Scholar]
- Skorupa, A.; Piasecka-Belkhayat, A. Numerical Modeling of Heat and Mass Transfer during Cryopreservation Using Interval Analysis. Appl. Sci. 2020, 11, 302. [Google Scholar] [CrossRef]
- Piasecka-Belkhayat, A.; Skorupa, A. Numerical Study of Heat and Mass Transfer during Cryopreservation Process with Application of Directed Interval Arithmetic. Materials 2021, 14, 2966. [Google Scholar] [CrossRef] [PubMed]
- Piasecka-Belkhayat, A.; Skorupa, A. Application of Interval Arithmetic in Numerical Modeling of Cryopreservation Process during Cryoprotectant Loading to Microchamber. Numer. Heat Transf. Part A Appl. 2022, 1–19. [Google Scholar] [CrossRef]
- Piasecka Belkhayat, A. Interval Boundary Element Method for 2D Transient Diffusion Problem Using the Directed Interval Arithmetic. Eng. Anal. Bound. Elem. 2011, 35, 259–263. [Google Scholar] [CrossRef]
- Tuckerman, D.B.; Pease, R.F.W. High-Performance Heat Sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Mochnacki, B.; Suchy, J. Modelowanie i Symulacja Krzepnięcia Odlewów; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1993. [Google Scholar]
- Bénard, A.; Advani, S.G. Energy Equation and the Crystallization Kinetics of Semi-Crystalline Polymers: Regimes of Coupling. Int. J. Heat Mass Transf. 1995, 38, 819–832. [Google Scholar] [CrossRef]
- Boutron, P.; Mehl, P. Theoretical Prediction of Devitrification Tendency: Determination of Critical Warming Rates without Using Finite Expansions. Cryobiology 1990, 27, 359–377. [Google Scholar] [CrossRef]
- Atyia, H.E.; Hegab, N.A. Activation Energy during the Crystallization Transition for Se-Based Chalcogenide Glasses. Optik 2021, 243, 167527. [Google Scholar] [CrossRef]
- Kandlikar, S.; Garimella, S.; Li, D.; Colin, S.; King, M.R. Heat Transfer and Fluid Flow in Minichannels and Microchannels; Elsevier: Amsterdam, The Netherlands, 2005; ISBN 978-0-08-045618-8. [Google Scholar]
- Majchrzak, E.; Mochnacki, B. Metody Numeryczne: Podstawy Teoretyczne, Aspekty Praktyczne i Algorytmy; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2005; ISBN 978-83-7335-231-5. [Google Scholar]
- Desai, P.D. Thermodynamic Properties of Iron and Silicon. J. Phys. Chem. Ref. Data 1986, 15, 967–983. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Thermal Conductivity: Silicon. Available online: https://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si (accessed on 17 November 2022).
- MeGlobalTM. Ethylene Glycol Product Guide; The MEGlobal Group of Companies: Dubai, United Arab Emirates, 2008; pp. 20–21. [Google Scholar]
- Powell, R.W.; Ho, C.Y.; Liley, P.E. Thermal Conductivity of Selected Materials; US Department of Commerce, National Bureau of Standards: Washington, DC, USA, 1966; Volume 8.
- Ren, H.S.; Wei, Y.; Hua, T.C.; Zhang, J. Theoretical Prediction of Vitrification and Devitrification Tendencies for Cryoprotective Solutions. Cryobiology 1994, 31, 47–56. [Google Scholar] [CrossRef]
- Maślankiewicz, P.; Wojciechowski, H. Ogrzewanie zamarzającą wodą. Instal 2007, 4, 19–24. [Google Scholar]
Parameter | Value | |
---|---|---|
Dimensions [8,39] | ||
Wf | [m] | 5 × 10−5 |
Ww | [m] | 2.5 × 10−5 |
Hf | [m] | 3.5 × 10−4 |
Hw | [m] | 1 × 10−4 |
Hs | [m] | 1 × 10−4 |
Working fluid parameters [8,44,50] | ||
Tf | [°C] | −196 (for cooling)/40 (for warming) |
α | [W·m−2·K−1] | 1.048 × 104 (for cooling)/4.74 × 104 (for warming) |
ka | [s−1·K−1] | 3.933 × 107 (for cooling)/1.287 (for warming) |
Crystallisation properties [42,51] | ||
Tm | [K] | 243.5 |
Q | [J·mol−1] | 4.187 × 103 |
Other [52] | ||
Lh | [J·kg−1] | 334 × 103 |
[kg·m−3] | 1000 | |
[kg·m−3] | 2330 |
Time, t [s] | Interval Thermal Conductivity, [W·m−1·K−1] | Interval Specific Heat Coefficient, × 103 [J·kg−1·K−1] | Interval Temperature, [°C] | Interval Degree of Crystallisation, × 10−8 |
---|---|---|---|---|
During cooling | ||||
0.0 | [0.987; 1.091] | [2.651; 2.930] | [22.000; 22.000] | [0.000; 0.000] |
0.1 | [2.125; 2.120] | [2.611; 2.612] | [−41.007; −40.677] | [0.3976; 0.3789] |
0.2 | [2.582; 2.578] | [2.522; 2.523] | [−72.112; −71.873] | [6.108; 6.182] |
0.4 | [3.195; 3.193] | [2.383; 2.383] | [−121.158; −120.973] | [6.832; 6.932] |
0.6 | [3.516; 3.515] | [2.295; 2.295] | [−152.115; −152.025] | [6.832; 6.932] |
0.8 | [3.651; 3.650] | [2.253; 2.253 | [−166.894; −166.848] | [6.832; 6.932] |
1.0 | [3.720; 3.720] | [2.229; 2.229] | [−175.088; −175.040 | [6.832; 6.932] |
During warming | ||||
0.0 | [3.6872; 4.0753] | [2.061; 2.278] | [−196.000; −196.000] | [6.832; 6.932] |
0.1 | [2.485; 2.496] | [2.542; 2.540] | [−65.211; −65.984] | [1.6 × 105; 1.3 × 105] |
0.2 | [2.442; 2.443] | [2.551; 2.550] | [−62.254; −62.270] | [5.352 × 107; 5.301 × 107] |
0.4 | [1.303; 1.310] | [2.750; 2.749] | [7.811; 7.427] | [7.811 × 108; 0.000] |
0.6 | [0.879; 0.879] | [2.814; 2.814] | [30.397; 30.364] | [0.000; 0.000] |
0.8 | [0.794; 0.794] | [2.827; 2.827] | [34.752; 34.739] | [0.000; 0.000] |
1.0 | [0.754; 0.754] | [2.832; 2.832] | [36.765; 36.758] | [0.000; 0.000] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecka-Belkhayat, A.; Skorupa, A. Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic. Materials 2023, 16, 2186. https://doi.org/10.3390/ma16062186
Piasecka-Belkhayat A, Skorupa A. Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic. Materials. 2023; 16(6):2186. https://doi.org/10.3390/ma16062186
Chicago/Turabian StylePiasecka-Belkhayat, Alicja, and Anna Skorupa. 2023. "Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic" Materials 16, no. 6: 2186. https://doi.org/10.3390/ma16062186
APA StylePiasecka-Belkhayat, A., & Skorupa, A. (2023). Crystallisation Degree Analysis during Cryopreservation of Biological Tissue Applying Interval Arithmetic. Materials, 16(6), 2186. https://doi.org/10.3390/ma16062186