The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Characterization and Processing
2.2. PEO-Coating Formation
2.3. Inhibitor and Polymer Treatment
- PEO–sample with base PEO-layer.
- CC-1,2,4-tr-0.5, CC-1,2,4-tr-1, CC-1,2,4-tr-2, CC-1,2,4-tr-24–samples with composite coating, obtained by the immersion of the PEO-coated specimen in 1,2,4-triazole solution for 0.5 h, 1 h, 2 h, and 24 h, respectively.
- CC-btr-0.5, CC-btr-1, CC-btr-2, CC-btr-24–samples with composite coating, obtained by the immersion of the PEO-coated specimen in benzotriazole solution for 0.5 h, 1 h, 2 h, and 24 h, respectively.
- CC-P–sample with composite coating, obtained by the treating the PEO-coated specimen with PVDF using spray-coating method.
- HC-1,2,4-tr, HC-btr–samples with hybrid coating obtained by treatment of CC-1,2,4tr-24 and CC-btr-24 specimens, respectively, with PVDF using spray-coating method.
2.4. Coatings’ Characterization
2.4.1. SEM-EDS Analysis
2.4.2. Raman Spectroscopy
2.4.3. XRD Analysis
2.4.4. XPS Analysis
2.5. Electrochemical Research
2.5.1. Electrochemical Impedance Spectroscopy
2.5.2. SVET/SIET Studies
2.6. Scratch Testing
3. Results and Discussion
3.1. Characterization of the Protective Layer
3.1.1. Morphology and Elemental Analysis (SEM-EDS Data)
3.1.2. Phase Analysis (XRD Data)
3.1.3. Chemical Composition Analysis (XPS Data)
3.1.4. Chemical Composition Analysis (Micro-Raman Spectroscopy Data)
3.2. Analysis of the Electrochemical Properties
3.2.1. EIS Data
3.2.2. SVET/SIET Data
3.3. Adhesion Analysis
3.4. Corrosion Inhibition Mechanism
- Active physical adsorption of triazoles on the surface of the PEO-coating due to the high affinity of aluminum and magnesium (which is the main alloying element in the AlMg3 alloy) to nitrogen (Figure 15, stage I). At the first stage, aggressive chloride ions can be captured by the corrosion inhibitor to form the compound 4,5,6,7-tetrachloro-1H-1,2,3-benzotriazole (as presented in Figure 15) [68].
- Formation of the protective film of a colloid-dispersed inhibitor (Figure 15, stage II).
- Formation of surface chemical compounds. Triazoles can act as ligands for aluminum (at the sites of damaged or degraded part of the PEO-layer and zones of the bare alloy) with subsequent formation of an organometallic compound, as shown in Figure 15, stage III.
4. Conclusions
- The optimal way of the impregnation of the PEO-coating matrix with organic corrosion inhibitors–benzotriazole and 1,2,4-triazole was selected (24 h immersion in 0.05 M solution). The presence of the corrosion inhibitor in the PEO-coating microtubes was confirmed and their distribution over the surface layer was established;
- A controlled release of the inhibitory agents from the pores-microcontainers of PEO-coating was ensured by processing the obtained composite coatings with a polymer material–polyvinylidene fluoride (PVDF) using the spray-coating method. This method allows the prolongation of the action of active corrosion protection of the substrate material. The HC-1,2,4-tr sample is characterized by the best corrosion resistance (|Z|f=0.1Hz = 2.7 × 107 Ω‧cm2). The protective properties of the surface layers are comparable with the results obtained by various scientific groups dealing with the formation of the base and modified PEO-coatings on Al alloys. Moreover, our hybrid layers have high adhesion to the substrate and can provide active corrosion protection of the Al alloy.
- It was revealed, that the impregnation of the PEO-coating’s microtubes with benzotriazole and 1,2,4-triazole leads to a significant decrease in local electrochemical activity evaluated at the microscale. Lower values of the local current density and higher pH values (as compared to ones registered for the sample with inhibitor-free PEO-layer) in the solution near the studied surface were detected;
- Based on the results of the complex analysis of the protective properties of the formed surface layers, the corrosion inhibition mechanism of hybrid inhibitor- and polymer-containing coating was suggested. The results of this work are beneficial for better understanding the degradation behavior of aluminum and its alloys and moving forward in developing an effective method for anticorrosion protection of promising constructional material.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, W.B.; Yuan, L.X.; Li, C.Y.; He, D.; Jia, D.W.; Zhang, Y.M. The Effect of Surface Roughness of the Substrate on Fatigue Life of Coated Aluminum Alloy by Micro-Arc Oxidation. J. Alloys Compd. 2018, 765, 1018–1025. [Google Scholar] [CrossRef]
- Ji, S.; Weng, Y.; Wu, Z.; Ma, Z.; Tian, X.; Fu, R.K.Y.; Lin, H.; Wu, G.; Chu, P.K.; Pan, F. Excellent Corrosion Resistance of P and Fe Modified Micro-Arc Oxidation Coating on Al Alloy. J. Alloys Compd. 2017, 710, 452–459. [Google Scholar] [CrossRef]
- Van Truong, P.; Van Bo, N.; Van Minh, N.; Anh, N.V.; Suresh Kumar, G.; Shkir, M. Investigation of Corrosion and Wear Resistance of PEO Coated D16T Aluminium Alloys in the Marine Tropical Climate Conditions. Mater. Chem. Phys. 2022, 290, 126587. [Google Scholar] [CrossRef]
- Xue, W.; Wu, X.; Li, X.; Tian, H. Anti-Corrosion Film on 2024/SiC Aluminum Matrix Composite Fabricated by Microarc Oxidation in Silicate Electrolyte. J. Alloys Compd. 2006, 425, 302–306. [Google Scholar] [CrossRef]
- Zhu, M.; Song, Y.; Liu, Z.; Xu, D.; Dong, K.; Han, E.-H. Optimization of Thermal Control and Corrosion Resistance of PEO Coatings on 7075 Aluminum Alloy by Frequency Alteration. Surf. Coat. Technol. 2022, 446, 128797. [Google Scholar] [CrossRef]
- Wang, P.; Wu, T.; Xiao, Y.T.; Pu, J.; Guo, X.Y. Effects of Ce(SO4)2 Concentration on the Properties of Micro-Arc Oxidation Coatings on ZL108 Aluminum Alloys. Mater. Lett. 2016, 182, 27–31. [Google Scholar] [CrossRef]
- Blawert, C.; Dietzel, W.; Ghali, E.; Song, G. Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments. Adv. Eng. Mater. 2006, 8, 511–533. [Google Scholar] [CrossRef]
- Lee, K.M.; Ko, Y.G.; Shin, D.H. Incorporation of Carbon Nanotubes into Micro-Coatings Film Formed on Aluminum Alloy via Plasma Electrolytic Oxidation. Mater. Lett. 2011, 65, 2269–2273. [Google Scholar] [CrossRef]
- Tang, Y.; Wu, F.; Fang, L.; Ruan, H.; Hu, J.; Zeng, X.; Zhang, S.; Luo, H.; Zhou, M. Effect of Deposition Sequence of MgAl-LDH and SiO2@PDMS Layers on the Corrosion Resistance of Robust Superhydrophobic/Self-Healing Multifunctional Coatings on Magnesium Alloy. Prog. Org. Coat. 2023, 174, 107299. [Google Scholar] [CrossRef]
- Feng, L.; Xing, R.; Wei, Q.; Yang, Y.; Li, G.; Liu, F. Improvement in Corrosion Protective Performance of Polyacrylate Coating Based on Corrosion Inhibitors Microcapsules. Mater. Lett. 2023, 331, 133514. [Google Scholar] [CrossRef]
- Zeng, Q.; Min, X.; Luo, Z.; Dai, H.; Liao, B. In-Situ Preparation of Superhydrophobic Zn-Al Layered Double Hydroxide Coatings for Corrosion Protection of Aluminum Alloy. Mater. Lett. 2022, 328, 133077. [Google Scholar] [CrossRef]
- Samaei, A.; Chaudhuri, S. Role of Zirconium Conversion Coating in Corrosion Performance of Aluminum Alloys: An Integrated First-Principles and Multiphysics Modeling Approach. Electrochim. Acta 2022, 433, 141195. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Imshinetskiy, I.M.; Vyaliy, I.E.; Gnedenkov, S.V. Effect of Microstructure on the Corrosion Resistance of TIG Welded 1579 Alloy. Materials 2019, 12, 2615. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Plekhova, N.G.; Gnedenkov, S.V. Smart Composite Antibacterial Coatings with Active Corrosion Protection of Magnesium Alloys. J. Magnes. Alloy. 2022, 10, 3589–3611. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Lamaka, S.V.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Egorkin, V.S.; Imshinetskiy, I.M.; Zheludkevich, M.L.; Gnedenkov, S.V. Control of the Mg Alloy Biodegradation via PEO and Polymer-Containing Coatings. Corros. Sci. 2021, 182, 109254. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Gnedenkov, S.V. Hydroxyapatite-Containing PEO-Coating Design for Biodegradable Mg-0.8Ca Alloy: Formation and Corrosion Behaviour. J. Magnes. Alloy. 2022. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Ustinov, A.Y.; Sukhoverkhov, S.V.; Gnedenkov, S.V. New Polycaprolactone-Containing Self-Healing Coating Design for Enhance Corrosion Resistance of the Magnesium and Its Alloys. Polymers 2023, 15, 202. [Google Scholar] [CrossRef]
- Zhu, M.; Song, Y.; Dong, K.; Shan, D.; Han, E.-H. Correlation between the Transient Variation in Positive/Negative Pulse Voltages and the Growth of PEO Coating on 7075 Aluminum Alloy. Electrochim. Acta 2022, 411, 140056. [Google Scholar] [CrossRef]
- Nadimi, M.; Dehghanian, C.; Etemadmoghadam, A. Influence of SiO2 Nanoparticles Incorporating into Ceramic Coatings Generated by PEO on Aluminium Alloy: Morphology, Adhesion, Corrosion, and Wear Resistance. Mater. Today Commun. 2022, 31, 103587. [Google Scholar] [CrossRef]
- Rao, Y.; Wang, Q.; Oka, D.; Ramachandran, C.S. On the PEO Treatment of Cold Sprayed 7075 Aluminum Alloy and Its Effects on Mechanical, Corrosion and Dry Sliding Wear Performances Thereof. Surf. Coat. Technol. 2020, 383, 125271. [Google Scholar] [CrossRef]
- Lu, C.; Shi, P.; Yang, J.; Jia, J.; Xie, E.; Sun, Y. Effects of Surface Texturing on the Tribological Behaviors of PEO/PTFE Coating on Aluminum Alloy for Heavy-Load and Long-Performance Applications. J. Mater. Res. Technol. 2020, 9, 12149–12156. [Google Scholar] [CrossRef]
- Lu, C.; Feng, X.; Yang, J.; Jia, J.; Yi, G.; Xie, E.; Sun, Y. Influence of Surface Microstructure on Tribological Properties of PEO-PTFE Coating Formed on Aluminum Alloy. Surf. Coat. Technol. 2019, 364, 127–134. [Google Scholar] [CrossRef]
- Pezzato, L.; Rigon, M.; Martucci, A.; Brunelli, K.; Dabalà, M. Plasma Electrolytic Oxidation (PEO) as Pre-Treatment for Sol-Gel Coating on Aluminum and Magnesium Alloys. Surf. Coat. Technol. 2019, 366, 114–123. [Google Scholar] [CrossRef]
- Zehra, T.; Fattah-alhosseini, A.; Kaseem, M. Surface Properties of Plasma Electrolytic Oxidation Coating Modified by Polymeric Materials: A Review. Prog. Org. Coat. 2022, 171, 107053. [Google Scholar] [CrossRef]
- Babaei, K.; Fattah-alhosseini, A.; Molaei, M. The Effects of Carbon-Based Additives on Corrosion and Wear Properties of Plasma Electrolytic Oxidation (PEO) Coatings Applied on Aluminum and Its Alloys: A Review. Surf. Interfaces 2020, 21, 100677. [Google Scholar] [CrossRef]
- Bouali, A.C.; Serdechnova, M.; Blawert, C.; Tedim, J.; Ferreira, M.G.S.; Zheludkevich, M.L. Layered Double Hydroxides (LDHs) as Functional Materials for the Corrosion Protection of Aluminum Alloys: A Review. Appl. Mater. Today 2020, 21, 100857. [Google Scholar] [CrossRef]
- Asan, G.; Asan, A. Inhibitor Effect of Nicotinamide on Corrosion of Aluminum. J. Mol. Struct. 2020, 1201, 127184. [Google Scholar] [CrossRef]
- Coelho, L.B.; Fava, E.B.; Kooijman, A.M.; Gonzalez-Garcia, Y.; Olivier, M.G. Molybdate as Corrosion Inhibitor for Hot Dip Galvanised Steel Scribed to the Substrate: A Study Based on Global and Localised Electrochemical Approaches. Corros. Sci. 2020, 175, 108893. [Google Scholar] [CrossRef]
- Yuan, Q.; Cheng, R.; Zou, S.; Ding, C.; Liu, H.; Wang, Y.; Yang, D.; Xiao, X.; Jiang, Q.; Tang, R.; et al. Isatin Thiosemicarbazone Derivatives as Inhibitors against Corrosion of AA6060 Aluminium Alloy in Acidic Chloride Medium: Substituent Effects. J. Mater. Res. Technol. 2020, 9, 11935–11947. [Google Scholar] [CrossRef]
- Sanni, O.; Ren, J.; Jen, T.-C. Agro-Industrial Wastes as Corrosion Inhibitor for 2024-T3 Aluminum Alloy in Hydrochloric Acid Medium. Results Eng. 2022, 16, 100676. [Google Scholar] [CrossRef]
- Tabish, M.; Yasin, G.; Anjum, M.J.; Malik, M.U.; Zhao, J.; Yang, Q.; Manzoor, S.; Murtaza, H.; Khan, W.Q. Reviewing the Current Status of Layered Double Hydroxide-Based Smart Nanocontainers for Corrosion Inhibiting Applications. J. Mater. Res. Technol. 2021, 10, 390–421. [Google Scholar] [CrossRef]
- Castro, Y.; Özmen, E.; Durán, A. Integrated Self-Healing Coating System for Outstanding Corrosion Protection of AA2024. Surf. Coat. Technol. 2020, 387, 125521. [Google Scholar] [CrossRef]
- Verma, C.; Rhee, K.Y.; Quraishi, M.A.; Ebenso, E.E. Pyridine Based N-Heterocyclic Compounds as Aqueous Phase Corrosion Inhibitors: A Review. J. Taiwan Inst. Chem. Eng. 2020, 117, 265–277. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, J. Nishtha Natural Gums as Corrosion Inhibitor: A Review. Mater. Today Proc. 2022, 64, 141–146. [Google Scholar] [CrossRef]
- Ouakki, M.; Galai, M.; Cherkaoui, M. Imidazole Derivatives as Efficient and Potential Class of Corrosion Inhibitors for Metals and Alloys in Aqueous Electrolytes: A Review. J. Mol. Liq. 2022, 345, 117815. [Google Scholar] [CrossRef]
- Brycki, B.; Szulc, A. Gemini Surfactants as Corrosion Inhibitors. A Review. J. Mol. Liq. 2021, 344, 117686. [Google Scholar] [CrossRef]
- El-Azabawy, O.E.; Higazy, S.A.; Al-Sabagh, A.M.; Abdel-Rahman, A.A.H.; Nasser, N.M.; Khamis, E.A. Studying the Temperature Influence on Carbon Steel in Sour Petroleum Media Using Facilely-Designed Schiff Base Polymers as Corrosion Inhibitors. J. Mol. Struct. 2023, 1275, 134518. [Google Scholar] [CrossRef]
- Zhang, A.; Wang, Y.; Wang, H. Preparation of Inorganic-Polymer Nano-Emulsion Inhibitor for Corrosion Resistance of Steel Reinforcement for Concrete. Alex. Eng. J. 2022, 66, 537–542. [Google Scholar] [CrossRef]
- EL Mazyani, A.; Chafi, M.; Essahli, M. Assessment of AA5005 Aluminum Alloy Corrosion Resistance by Direct Blue 15 Inhibitor in Sodium Chloride Medium. Mater. Today Proc. 2020, 37, 3882–3888. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Rhee, K.Y. Aqueous Phase Polymeric Corrosion Inhibitors: Recent Advancements and Future Opportunities. J. Mol. Liq. 2022, 348, 118387. [Google Scholar] [CrossRef]
- Shahini, M.H.; Ramezanzadeh, B.; Mohammadloo, H.E. Recent Advances in Biopolymers/Carbohydrate Polymers as Effective Corrosion Inhibitive Macro-Molecules: A Review Study from Experimental and Theoretical Views. J. Mol. Liq. 2021, 325, 115110. [Google Scholar] [CrossRef]
- Hung, H.M.; Linh, D.K.; Chinh, N.T.; Duc, L.M.; Trung, V.Q. Improvement of the Corrosion Protection of Polypyrrole Coating for CT3 Mild Steel with 10-Camphorsulfonic Acid and Molybdate as Inhibitor Dopants. Prog. Org. Coat. 2019, 131, 407–416. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Hu, W. Synthesis, Inhibition Behavior and Recycling of Fe3O4@ZnAl-MoO4 LDH Nanocomposite Inhibitor. J. Alloys Compd. 2019, 801, 489–501. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, A.S.; Tran, B.A.; Vu, K.O.; Tran, D.L.; Phan, T.T.; Scharnagl, N.; Zheludkevich, M.L.; To, T.X.H. Molybdate Intercalated Hydrotalcite/Graphene Oxide Composite as Corrosion Inhibitor for Carbon Steel. Surf. Coat. Technol. 2020, 399, 126165. [Google Scholar] [CrossRef]
- Nnaji, N.; Nwaji, N.; Mack, J.; Nyokong, T. Ball-Type Phthalocyanines and Reduced Graphene Oxide Nanoparticles as Separate and Combined Corrosion Inhibitors of Aluminium in HCl. J. Mol. Struct. 2021, 1236, 130279. [Google Scholar] [CrossRef]
- Padash, R.; Sajadi, G.S.; Jafari, A.H.; Jamalizadeh, E.; Rad, A.S. Corrosion Control of Aluminum in the Solutions of NaCl, HCl and NaOH Using 2,6-Dimethylpyridine Inhibitor: Experimental and DFT Insights. Mater. Chem. Phys. 2020, 244, 122681. [Google Scholar] [CrossRef]
- Wang, D.; Wu, M.; Ming, J.; Shi, J. Inhibitive Effect of Sodium Molybdate on Corrosion Behaviour of AA6061 Aluminium Alloy in Simulated Concrete Pore Solutions. Constr. Build. Mater. 2021, 270, 121463. [Google Scholar] [CrossRef]
- Wu, M.; Ma, H.; Shi, J. Beneficial and Detrimental Effects of Molybdate as an Inhibitor on Reinforcing Steels in Saturated Ca(OH)2 Solution: Spontaneous Passivation. Cem. Concr. Compos. 2021, 116, 103887. [Google Scholar] [CrossRef]
- Farahani, M.; Yousefnia, H.; Seyedraoufi, Z.S.; Shajari, Y. The Effect of Benzotriazole Gradual Change on the Corrosion Performance of Nanocomposite Multilayer Self-Healing Coating Based on Titania-Alumina-Benzotriazole on AA7075. Ceram. Int. 2019, 45, 16584–16590. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Yasakau, K.A.; Poznyak, S.K.; Ferreira, M.G.S. Triazole and Thiazole Derivatives as Corrosion Inhibitors for AA2024 Aluminium Alloy. Corros. Sci. 2005, 47, 3368–3383. [Google Scholar] [CrossRef]
- Lamaka, S.V.; Vaghefinazari, B.; Mei, D.; Petrauskas, R.P.; Höche, D.; Zheludkevich, M.L. Comprehensive Screening of Mg Corrosion Inhibitors. Corros. Sci. 2017, 128, 224–240. [Google Scholar] [CrossRef]
- Maltseva, A.; Lamaka, S.V.; Yasakau, K.A.; Mei, D.; Kurchavov, D.; Zheludkevich, M.L.; Lefèvre, G.; Volovitch, P. In Situ Surface Film Evolution during Mg Aqueous Corrosion in Presence of Selected Carboxylates. Corros. Sci. 2020, 171, 108484. [Google Scholar] [CrossRef]
- Vaghefinazari, B.; Wang, C.; Mercier, D.; Mei, D.; Seyeux, A.; Marcus, P.; Blawert, C.; Lamaka, S.V.; Zheludkevich, M.L. Adverse Effect of 2,5PDC Corrosion Inhibitor on PEO Coated Magnesium. Corros. Sci. 2021, 192, 109830. [Google Scholar] [CrossRef]
- Çuğ, H.E.; Cevik, Y.; Sun, Y.; Türen, H.A. Effect of Mg Addition on Thermal Conductivity of Al/B4C Composites. In Book of Proceedings, Proceedings of the ICENC 2016, Sarajevo, Bosnia and Herzegovina, 24–28 May 2016; CNR Group: Istanbul, Turkey, 2016; pp. 2526–2529. ISBN 978-605-83575-0-1. [Google Scholar]
- Wieduwilt, F.; Lenth, C.; Ctistis, G.; Plachetka, U.; Möller, M.; Wackerbarth, H. Evaluation of an On-Site Surface Enhanced Raman Scattering Sensor for Benzotriazole. Sci. Rep. 2020, 10, 8260. [Google Scholar] [CrossRef]
- Chan, H.Y.H.; Weaver, M.J. Vibrational Structural Analysis of Benzotriazole Adsorption and Phase Film Formation on Copper Using Surface-Enhanced Raman Spectroscopy. Langmuir 1999, 15, 3348–3355. [Google Scholar] [CrossRef]
- Thomas, S.; Venkateswaran, S.; Kapoor, S.; D’Cunha, R.; Mukherjee, T. Surface Enhanced Raman Scattering of Benzotriazole: A Molecular Orientational Study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, S1386–S1425. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Xavier, R.J. FT Raman and FT–IR Spectral Studies of 3-Mercapto-1,2,4-Triazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 709–714. [Google Scholar] [CrossRef]
- Subashchandrabose, S.; Krishnan, A.R.; Saleem, H.; Thanikachalam, V.; Manikandan, G.; Erdogdu, Y. FT-IR, FT-Raman, NMR Spectral Analysis and Theoretical NBO, HOMO-LUMO Analysis of Bis(4-Amino-5-Mercapto-1,2,4-Triazol-3-Yl)Ethane by Ab Initio HF and DFT Methods. J. Mol. Struct. 2010, 981, 59–70. [Google Scholar] [CrossRef]
- Sherif, E.S.M.; Erasmus, R.M.; Comins, J.D. Corrosion of Copper in Aerated Synthetic Sea Water Solutions and Its Inhibition by 3-Amino-1,2,4-Triazole. J. Colloid Interface Sci. 2007, 309, 470–477. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, Y.; Xue, J.; Zheng, X. Environment-Dependent Conformation Investigation of 3-Amino-1,2,4-Triazole (3-AT): Raman Spectroscopy and Density Functional Theory. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 190, 478–485. [Google Scholar] [CrossRef]
- An, S.; Meng, S.; Xue, J.; Wang, H.; Zheng, X.; Zhao, Y. UV–Vis, Raman Spectroscopic and Density Functional Theoretical Studies on Microsolvation 1, 2, 4-Triazole-3-Thione Clusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119762. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Vyaliy, I.E.; Egorkin, V.S.; Gnedenkov, S.V. Corrosion of the Welded Aluminium Alloy in 0.5 M NaCl Solution. Part 1: Specificity of Development. Materials 2018, 11, 2053. [Google Scholar] [CrossRef] [PubMed]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Gnedenkov, S.V. Localized Corrosion of the Mg Alloys with Inhibitor-Containing Coatings: SVET and SIET Studies. Corros. Sci. 2016, 102, 269–278. [Google Scholar] [CrossRef]
- Karavai, O.V.; Bastos, A.C.; Zheludkevich, M.L.; Taryba, M.G.; Lamaka, S.V.; Ferreira, M.G.S. Localized Electrochemical Study of Corrosion Inhibition in Microdefects on Coated AZ31 Magnesium Alloy. Electrochim. Acta 2010, 55, 5401–5406. [Google Scholar] [CrossRef]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Mashtalyar, D.V.; Vyaliy, I.E.; Egorkin, V.S.; Gnedenkov, S.V. Corrosion of the Welded Aluminium Alloy in 0.5 M NaCl Solution. Part 2: Coating Protection. Materials 2018, 11, 2177. [Google Scholar] [CrossRef] [PubMed]
- Gnedenkov, A.S.; Sinebryukhov, S.L.; Filonina, V.S.; Egorkin, V.S.; Ustinov, A.Y.; Sergienko, V.I.; Gnedenkov, S.V. The Detailed Corrosion Performance of Bioresorbable Mg-0.8Ca Alloy in Physiological Solutions. J. Magnes. Alloy. 2021, 10, 1326–1350. [Google Scholar] [CrossRef]
- Finšgar, M.; Milošev, I. Inhibition of Copper Corrosion by 1,2,3-Benzotriazole: A Review. Corros. Sci. 2010, 52, 2737–2749. [Google Scholar] [CrossRef]
Element | Chemical State | Studied Surface | |
---|---|---|---|
Before Etching | After Etching | ||
F (1s) | CFx | 689.3 (0.5) | 687.8 (0.5) |
MF * | 685.8 (1.1) | 686.1 (1.2) | |
O (1s) | COx | 533.1 (20.1) | 533.0 (21.0) |
Al2O3 | 531.7 (17.9) | 531.6 (19.4) | |
N (1s) | -NH- | 400.4 (1.1) | 400.7 (0.8) |
=N- | 399.1 (0.6) | 398.5 (0.6) | |
C (1s) | O-C = O; | 288.6 (3.7) | 288.9 (2.7) |
C-O-C; C-N | 286.4 (9.3) | 286.4 (5.1) | |
C-C; C-H | 285.0 (24.0) | 285.0 (12.5) | |
MC * | - | 283.0 (6.4) | |
Si (2p) | SiO | 102.0 (1.3) | 102.0 (1.5) |
SiC | 100.3 (2.6) | 100.5 (3.1) | |
Al (2p) | Al3+ | 74.4 (17.0) | 75.0 (24.1) |
Mg (2s) | Mg2+ | 90.0 (0.8) | 91.4 (1.1) |
Element | Chemical State | Studied Surface | |
---|---|---|---|
Before Etching | After Etching | ||
F (1s) | CFx | 689.0 (0.4) | 687.8 (0.4) |
MF * | 685.4 (1.2) | 686.3 (1.2) | |
O (1s) | COx | 532.7 (20.9) | 533.0 (23.4) |
Al2O3 | 531.4 (15.1) | 531.7 (19.5) | |
N (1s) | -NH- | 400.6 (2.4) | 400.4 (1.0) |
=N- | 399.3 (0.9) | 398.3 (0.8) | |
C (1s) | O-C = O | 288.5 (5.7) | 288.4 (0.8) |
C-O-C; C-N | 286.3 (9.7) | 286.3 (5.6) | |
C-C; C-H | 285.0 (25.2) | 285.0 (10.8) | |
MC * | - | 283.2 (3.5) | |
Si (2p) | SiO | 101.8 (1.0) | 101.7 (1.8) |
SiC | 99.9 (2.2) | 100.0 (3.4) | |
Al (2p) | Al3+ | 74.8 (14.8) | 75.0 (27.3) |
Mg (2s) | Mg2+ | 89.0 (0.5) | 89.5 (0.5) |
Sample | CPE1 | R1, Ω∙cm2 | CPE2 | R2, Ω∙cm2 | |Z|f=0.1Hz, Ω∙cm2 | ||
---|---|---|---|---|---|---|---|
Q1, S∙cm−2∙cn | n | Q2, S∙cm−2∙cn | n | ||||
PEO | 4.8 × 10−8 | 0.91 | 1.1 × 103 | 1.6 × 10−8 | 0.93 | 1.7 × 105 | 1.3 × 105 |
CC-1,2,4-tr-0.5 | 4.2 × 10−8 | 0.96 | 8.8 × 105 | 7.9 × 10−8 | 0.63 | 2.3 × 106 | 2.1 × 106 |
CC-1,2,4-tr-1 | 4.6 × 10−8 | 0.95 | 2.5 × 106 | 5.8 × 10−7 | 0.97 | 6.3 × 106 | 2.9 × 106 |
CC-1,2,4-tr-2 | 4.1 × 10−8 | 0.94 | 2.7 × 106 | 7.0 × 10−7 | 0.98 | 6.2 × 106 | 1.5 × 106 |
CC-1,2,4-tr-24 | 4.1 × 10−8 | 0.94 | 2.9 × 106 | 1.5 × 10−7 | 0.31 | 8.0 × 106 | 4.7 × 106 |
CC-btr-0.5 | 9.4 × 10−8 | 0.90 | 1.9 × 105 | 1.2 × 10−7 | 0.57 | 2.0 × 105 | 7.1 × 105 |
CC-btr-1 | 1.1 × 10−7 | 0.88 | 2.1 × 104 | 1.0 × 10−8 | 0.87 | 4.4 × 105 | 5.7 × 105 |
CC-btr-2 | 7.3 × 10−8 | 0.89 | 3.6 × 105 | 2.4 × 10−8 | 0.94 | 6.3 × 105 | 1.1 × 106 |
CC-btr-24 | 2.8 × 10−8 | 0.95 | 4.0 × 106 | 8.7 × 10−8 | 0.26 | 2.1 × 106 | 2.7 × 106 |
Sample | CPE1 | R1, Ω∙cm2 | CPE2 | R2, Ω∙cm2 | CPE3 | R3, Ω∙cm2 | |Z|f=0.1Hz, Ω∙cm2 | |||
---|---|---|---|---|---|---|---|---|---|---|
Q1, S∙cm−2∙cn | n | Q2, S∙cm−2∙cn | n | Q3, S∙cm−2∙cn | n | |||||
HC-1,2,4-tr | 2.9 × 10−8 | 0.97 | 5.1 × 105 | 4.3 × 10−8 | 0.71 | 7.9 × 107 | 3.8 × 10−8 | 0.62 | 3.4 × 107 | 2.7 × 107 |
HC-btr | 3.8 × 10−8 | 0.94 | 1.2 × 105 | 2.8 × 10−7 | 0.83 | 7.5 × 106 | 9.3 × 10−8 | 0.70 | 1.2 × 106 | 4.8 × 106 |
CC-P | 7.7 × 10−8 | 0.89 | 1.0 × 105 | 1.8 × 10−7 | 0.68 | 2.7 × 105 | 2.8 × 10−7 | 0.74 | 8.1 × 105 | 1.0 × 106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnedenkov, A.S.; Kononenko, Y.I.; Sinebryukhov, S.L.; Filonina, V.S.; Vyaliy, I.E.; Nomerovskii, A.D.; Ustinov, A.Y.; Gnedenkov, S.V. The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy. Materials 2023, 16, 2215. https://doi.org/10.3390/ma16062215
Gnedenkov AS, Kononenko YI, Sinebryukhov SL, Filonina VS, Vyaliy IE, Nomerovskii AD, Ustinov AY, Gnedenkov SV. The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy. Materials. 2023; 16(6):2215. https://doi.org/10.3390/ma16062215
Chicago/Turabian StyleGnedenkov, Andrey S., Yana I. Kononenko, Sergey L. Sinebryukhov, Valeriia S. Filonina, Igor E. Vyaliy, Alexey D. Nomerovskii, Alexander Yu. Ustinov, and Sergey V. Gnedenkov. 2023. "The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy" Materials 16, no. 6: 2215. https://doi.org/10.3390/ma16062215
APA StyleGnedenkov, A. S., Kononenko, Y. I., Sinebryukhov, S. L., Filonina, V. S., Vyaliy, I. E., Nomerovskii, A. D., Ustinov, A. Y., & Gnedenkov, S. V. (2023). The Effect of Smart PEO-Coatings Impregnated with Corrosion Inhibitors on the Protective Properties of AlMg3 Aluminum Alloy. Materials, 16(6), 2215. https://doi.org/10.3390/ma16062215