Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmood, A.; Hu, J.-Y.; Xiao, B.; Tang, A.; Wang, X.; Zhou, E. Recent progress in porphyrin-based materials for organic solar cells. J. Mater. Chem. A 2018, 6, 16769–16797. [Google Scholar] [CrossRef]
- Tong, Y.; Xiao, Z.; Du, X.; Zuo, C.; Li, Y.; Lv, M.; Yuan, Y.; Yi, C.; Hao, F.; Hua, Y.; et al. Progress of the key materials for organic solar cells. Sci. China Chem. 2020, 63, 758–765. [Google Scholar] [CrossRef]
- Duan, T.; Chen, Q.; Hu, D.; Lv, J.; Yu, D.; Li, G.; Lu, S. Oligothiophene-based photovoltaic materials for organic solar cells: Rise, plateau, and revival. Trends Chem. 2022, 4, 773–791. [Google Scholar] [CrossRef]
- Ghosekar, I.C.; Patil, G.C. Review on performance analysis of P3HT:PCBM-based bulk heterojunction organic solar cells. Semicond. Sci. Technol. 2021, 36, 045005. [Google Scholar] [CrossRef]
- Mabindisa, R.; Tambwe, K.; Mciteka, L.; Ross, N. Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells. Appl. Sci. 2021, 11, 11324. [Google Scholar] [CrossRef]
- Kadem, B.; Alfahed, R.; Al-Asadi, A.; Badran, H. Morphological, structural, optical, and photovoltaic cell of copolymer P3HT: ICBA and P3HT: PCBM. Optik 2020, 204, 164153. [Google Scholar] [CrossRef]
- Garg, M.; Ghosh, S.; Shukla, A.K.; Sharma, S.K.; Kumar, A.; Chopra, V. Improving morphology of P3HT:PCBM bulk heterojunction solar cells with anisotropic shaped silica nanoparticles. Mater. Today Proc. 2022, 76, 263–270. [Google Scholar] [CrossRef]
- Yao, Z.-F.; Wang, J.-Y.; Pei, J. Controlling morphology and microstructure of conjugated polymers via solution-state aggregation. Prog. Polym. Sci. 2022, 136, 101626. [Google Scholar] [CrossRef]
- Cheng, H.-W.; Zhang, H.; Lin, Y.-C.; She, N.-Z.; Wang, R.; Chen, C.-H.; Yuan, J.; Tsao, C.-S.; Yabushita, A.; Zou, Y.; et al. Realizing Efficient Charge/Energy Transfer and Charge Extraction in Fullerene-Free Organic Photovoltaics via a Versatile Third Component. Nano Lett. 2019, 19, 5053–5061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Zhang, X.; Zhang, Y.; Zhou, H. Role of interface properties in organic solar cells: From substrate engineering to bulk-heterojunction interfacial morphology. Mater. Chem. Front. 2020, 4, 2863–2880. [Google Scholar] [CrossRef]
- Peter Amalathas, A.; Alkaisi, M.M. Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 2019, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, J. Applications of carbon nanotubes and graphene for third-generation solar cells and fuel cells. Nano Mater. Sci. 2019, 1, 77–90. [Google Scholar] [CrossRef]
- Tabrizi, A.A.; Pahlavan, A. Efficiency improvement of a silicon-based thin-film solar cell using plasmonic silver nanoparticles and an antireflective layer. Opt. Commun. 2020, 454, 124437. [Google Scholar] [CrossRef]
- Linic, S.; Chavez, S.; Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 2021, 20, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Yao, Z.; Wu, H.; Luo, L.; Ding, Y.; Yang, C.; Wang, X.; Shen, Z.; Wang, J.; Pei, J. Regulation of High Miscibility for Efficient Charge-Transport in n-Doped Conjugated Polymers. Angew. Chem. 2022, 134, e202200221. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Liang, W.; Yang, H.; Guan, T.; Zhao, B.; Sun, Y.; Chi, L.; Jiang, L. Rational Design of Plasmonic Metal Nanostructures for Solar Energy Conversion. CCS Chem. 2022, 4, 1153–1168. [Google Scholar] [CrossRef]
- Sun, W.; Cheng, J.; Chen, S. Preparation and Superconducting Properties of Nb3Sn by Mechanical Alloying. J. Low Temp. Phys. 2021, 205, 100–111. [Google Scholar] [CrossRef]
- Koblischka, M.R.; Roth, S.; Koblischka-Veneva, A.; Karwoth, T.; Wiederhold, A.; Zeng, X.L.; Fasoulas, S.; Murakami, M. Relation between Crystal Structure and Transition Temperature of Superconducting Metals and Alloys. Metals 2020, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Mota, I.C.; Santos, B.P.S.; Santos, R.É.P.; Guedes, L.B.; Soares, I.T.; Arias, J.R.; de Araújo, F.L.; Nogueira, A.; Marques, M.V. Influence of reaction time on properties of regioregular poly(3-hexylthiophene) by the Grignard metathesis polymerization. J. Therm. Anal. Calorim. 2022, 147, 5037–5048. [Google Scholar] [CrossRef]
- Bellacanzone, C.; Prosa, M.; Muccini, M.; Ruani, G.; Seri, M.; Bolognesi, M. Effect of Different Ionic Surfactants on the Structural, Photophysical, and Morphological Properties of Water-Based P3HT: PCBM Nanoparticle Dispersions and Films. Part. Part. Syst. Charact. 2021, 38, 2000219. [Google Scholar] [CrossRef]
- Aubry, T.J.; Winchell, K.J.; Salamat, C.Z.; Basile, V.M.; Lindemuth, J.R.; Stauber, J.M.; Axtell, J.C.; Kubena, R.M.; Phan, M.D.; Bird, M.J.; et al. Tunable Dopants with Intrinsic Counterion Separation Reveal the Effects of Electron Affinity on Dopant Intercalation and Free Carrier Production in Sequentially Doped Conjugated Polymer Films. Adv. Funct. Mater. 2020, 30, 2001800. [Google Scholar] [CrossRef] [PubMed]
- Yee, P.Y.; Scholes, D.T.; Schwartz, B.J.; Tolbert, S.H. Dopant-Induced Ordering of Amorphous Regions in Regiorandom P3HT. J. Phys. Chem. Lett. 2019, 10, 4929–4934. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Barman, U.; Manir, M.; Mondal, P.; Dutta, S.; Paul, M.; Chowdhury, M.; Hakim, M. X-ray peak profile analysis of pure and Dy-doped α-MoO3 nanobelts using Debye-Scherrer, Williamson-Hall and Halder-Wagner methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2020, 11, 025004. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Singh, A. A study of confinement induced surface structure of P3HT and P3HT/PCBM blend using grazing incidence diffraction. Surf. Topogr. Metrol. Prop. 2022, 10, 025033. [Google Scholar] [CrossRef]
- Kırbıyık, Ç.; Alıç, T.Y.; Kuş, M. Influence of alkyl chain length of boronic acid self-assembled monolayers on indium tin oxide and their organic solar cell performance. Microelectron. Eng. 2020, 231, 111394. [Google Scholar] [CrossRef]
- Al-Harthi, A.M.; Mahmoud, W.E. Influence of the fullerene acceptor derivative on the structure, molecular interaction and optoelectronic properties of poly (3-hexylthiophene) blend films: Elucidating key factors. Opt. Mater. 2022, 124, 112009. [Google Scholar] [CrossRef]
- Baibarac, M.; Arzumanyan, G.; Daescu, M.; Udrescu, A.; Mamatkulov, K. Anisotropic Photoluminescence of Poly(3-hexyl thiophene) and their Composites with Single-Walled Carbon Nanotubes Highly Separated in Metallic and Semiconducting Tubes. Molecules 2021, 26, 294. [Google Scholar] [CrossRef] [PubMed]
- Gülercan, D. Investigation of Capacitive Behaviour of Emulsion Polymerized Pedot and Its Nanocomposites; Fen Bilimleri Enstitüsü: İstanbul, Türkiye, 2019. [Google Scholar]
- Çaldıran, Z.; Aydoğan, Ş. Effects of the photoactive layer properties and current transmission mechanism on optical and electrical characteristics of organic photovoltaic. Optik 2021, 241, 166937. [Google Scholar] [CrossRef]
- Mahakul, P.C.; Mahanandia, P. RGO induced structural and microstructural properties of P3HT in the performance and stability of polymer solar cells. Mater. Res. Express 2019, 6, 125338. [Google Scholar] [CrossRef]
- Ramadan, A.; Anas, M.; Ebrahim, S.; Soliman, M.; Abou-Aly, A. Polyaniline/fullerene derivative nanocomposite for highly efficient supercapacitor electrode. Int. J. Hydrogen Energy 2020, 45, 16254–16265. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, T.; Feng, M.; Cui, Y.; Zhang, T.; Zhang, Y.; Feng, Y.; Zhang, Y.; Chi, Q.; Liu, X. Significantly Improved Energy Storage Performance of PVDF Ferroelectric Films by Blending PMMA and Filling PCBM. ACS Sustain. Chem. Eng. 2021, 9, 16291–16303. [Google Scholar] [CrossRef]
- Mahendia, P.; Chauhan, G.; Wadhwa, H.; Kandhol, G.; Mahendia, S.; Srivastava, R.; Sinha, O.; Clemons, T.D.; Kumar, S. Study of induced structural, optical and electrochemical properties of Poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) and their blend as an effect of graphene doping. J. Phys. Chem. Solids 2021, 148, 109644. [Google Scholar] [CrossRef]
- Sharma, T.; Singhal, R.; Vishnoi, R.; Sharma, G.; Biswas, S. Effect of high energy ions on the electrical and morphological properties of Poly(3-Hexylthiophene) (P3HT) thin film. Phys. B Condens. Matter 2018, 537, 306–313. [Google Scholar] [CrossRef]
- Endale, T.; Sovernigo, E.; Radivo, A.; Dal Zilio, S.; Pozzato, A.; Yohannes, T.; Vaccari, L.; Tormen, M. Investigation of photodegradation in polymer solar cells blended with different fullerenes derivatives. Sol. Energy Mater. Sol. Cells 2014, 123, 150–158. [Google Scholar] [CrossRef]
- Bhatia, R.; Kumar, L. Functionalized carbon nanotube doping of P3HT:PCBM photovoltaic devices for enhancing short circuit current and efficiency. J. Saudi Chem. Soc. 2017, 21, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Otieno, F.; Kotane, L.; Airo, M.; Erasmus, R.M.; Billing, C.; Wamwangi, D.; Billing, D.G. Comparative Investigation of Fullerene PC71BM and Non-fullerene ITIC-Th Acceptors Blended With P3HT or PBDB-T Donor Polymers for PV Applications. Front. Energy Res. 2021, 9, 640664. [Google Scholar] [CrossRef]
- Motaung, D.E.; Malgas, G.F.; Arendse, C.J.; Mavundla, S.E.; Knoesen, D. Structural and photo-physical properties of spin-coated poly(3-hexylthiophene) thin films. Mater. Chem. Phys. 2009, 116, 279–283. [Google Scholar] [CrossRef]
- Guo, Y.; He, L.; Guo, J.; Guo, Y.; Zhang, F.; Wang, L.; Yang, H.; Xiao, C.; Liu, Y.; Chen, Y.; et al. A Phenanthrocarbazole-Based Dopant-Free Hole-Transport Polymer with Noncovalent Conformational Locking for Efficient Perovskite Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202114341. [Google Scholar] [CrossRef]
- Kaçuş, H.; Metin, Ö; Sevim, M.; Biber, M.; Baltakesmez, A.; Aydoğan, Ş. A comparative study on the effect of monodisperse Au and Ag nanoparticles on the performance of organic photovoltaic devices. Opt. Mater. 2021, 116, 111082. [Google Scholar] [CrossRef]
- Sakai-Otsuka, Y.; Nishiyama, Y.; Putaux, J.-L.; Brinkmann, M.; Satoh, T.; Chen, W.-C.; Borsali, R. Competing Molecular Packing of Blocks in a Lamella-Forming Carbohydrate-block-poly(3-hexylthiophene) Copolymer. Macromolecules 2020, 53, 9054–9064. [Google Scholar] [CrossRef]
- Mansour, A.E.; Lungwitz, D.; Schultz, T.; Arvind, M.; Valencia, A.M.; Cocchi, C.; Opitz, A.; Neher, D.; Koch, N. The optical signatures of molecular-doping induced polarons in poly (3-hexylthiophene-2, 5-diyl): Individual polymer chains versus aggregates. J. Mater. Chem. C 2020, 8, 2870–2879. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.S.; Divya, G.; Kumar, K.S. P3HT Thin Films And Their Optical Characterization. In Proceedings of the 2021 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), Ernakulam, India, 2–4 September 2021; pp. 5–8. [Google Scholar]
- Liao, C.-K.; Phan, J.; Martinez-Barron, H.; Mahmoud, M.A. Modulating the Optical Band Gap of Small Semiconducting Two-Dimensional Materials by Conjugated Polymers. Langmuir 2020, 36, 2574–2583. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Chen, Y.; Fang, J.; Ma, C.; Zhou, G.; Zhu, H.; et al. Manipulating Charge Transfer and Transport via Intermediary Electron Acceptor Channels Enables 19.3% Efficiency Organic Photovoltaics. Adv. Energy Mater. 2022, 12, 2201076. [Google Scholar] [CrossRef]
- Xing, W.; Ma, F.; Li, Z.-J.; Wang, A.; Liu, M.; Han, J.; Wu, G.; Tu, W. Edge effect-modulated exciton dissociation and charge transfer in porous ultrathin tubular graphitic carbon nitride for boosting photoredox activity. J. Mater. Chem. A 2022, 10, 18333–18342. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Zhou, G.; Yi, Y.; Xu, S.; Liu, F.; Zhu, H.; Zhu, X. Accurate Determination of the Minimum HOMO Offset for Efficient Charge Generation using Organic Semiconducting Alloys. Adv. Energy Mater. 2020, 10, 1903298. [Google Scholar] [CrossRef]
- Huq, A.F.; Karim, A. Comparative solvent quality dependent crystallization in solvent vapor annealing of P3HT:PCBM thin films by in-situ GIWAXS. Polymer 2019, 165, 101–111. [Google Scholar] [CrossRef]
- Mombrú, D.; Romero, M.; Faccio, R.; Mombrú, Á.W. Roles of amorphous and crystalline regions in determining the optical and electronic properties of donor:acceptor systems comprising poly(3-hexylthiophene) embedded with nitrogen/sulfur-doped graphene quantum dots. Polym. J. 2022, 54, 1465–1476. [Google Scholar] [CrossRef]
- Otieno, F.; Mutuma, B.K.; Airo, M.; Ranganathan, K.; Erasmus, R.; Coville, N.; Wamwangi, D. Enhancement of organic photovoltaic device performance via P3HT:PCBM solution heat treatment. Thin Solid Films 2017, 625, 62–69. [Google Scholar] [CrossRef]
- Babusenan, A.; Mondal, S.; Ramaswamy, S.; Dutta, S.; Gopalakrishnan, M.; Bhattacharyya, J. Investigation of non-linear dependence of exciton recombination efficiency on PCBM concentration in P3HT:PCBM blends. Mater. Res. Express 2019, 6, 085309. [Google Scholar] [CrossRef]
- Fan, W.; Shen, Y.; Deng, K.; Chen, Q.; Bai, Y.; Li, L. Synergistic bonding stabilized interface for perovskite solar cells with over 24% efficiency. Nano Energy 2022, 100, 107518. [Google Scholar] [CrossRef]
- Qin, Y.; Chang, Y.; Zhu, X.; Gu, X.; Guo, L.; Zhang, Y.; Wang, Q.; Zhang, J.; Zhang, X.; Liu, X.; et al. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today 2021, 41, 101289. [Google Scholar] [CrossRef]
- Chou, H.-C.; Fang, C.-K.; Chung, P.-Y.; Yu, J.-R.; Liao, W.-S.; Chen, S.-H.; Chen, P.; Hwang, I.-S.; Chen, J.-T.; Chen, C. Structural and Optical Identification of Planar Side-Chain Stacking P3HT Nanowires. Macromolecules 2021, 54, 10750–10757. [Google Scholar] [CrossRef]
- Li, S.; Jin, Z.; Lai, W.; Zhang, H.; Wang, D.; Song, S.; Zeng, T. Alkali and donor–acceptor bridged three-dimensional interpenetrating polymer networks boost photocatalytic performance by efficient electron delocalization and charge transfer. Appl. Catal. B Environ. 2021, 292, 120153. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, Y.; Du, S.; Tong, J.; Shi, X.; Li, J.; Bao, X.; Xia, Y.; Liu, T.; et al. Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Appl. Mater. Interfaces 2021, 13, 11117–11124. [Google Scholar] [CrossRef] [PubMed]
Sample | VOC (mV) | JSC (mA/cm2) | FF (%) | (%) | ||
---|---|---|---|---|---|---|
Pure P3HT:PCBM | 445 | 12.3 | 62.42 | 3.41 | 26.87 | 412.5 |
2 mg/mL-Nb | 445 | 12.95 | 62.53 | 3.6 | 25.64 | 453.3 |
4 mg/mL-Nb | 455 | 14.74 | 63.73 | 4.27 | 22.34 | 625.1 |
6 mg/mL-Nb | 458 | 16.01 | 64.23 | 4.7 | 17.23 | 724.1 |
8 mg/mL-Nb | 466 | 16.86 | 65.73 | 5.16 | 15.67 | 944.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkawi, E.M.; Al-Hadeethi, Y.; Arkook, B.; Bekyarova, E. Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells. Materials 2023, 16, 2218. https://doi.org/10.3390/ma16062218
Mkawi EM, Al-Hadeethi Y, Arkook B, Bekyarova E. Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells. Materials. 2023; 16(6):2218. https://doi.org/10.3390/ma16062218
Chicago/Turabian StyleMkawi, Elmoiz Merghni, Yas Al-Hadeethi, Bassim Arkook, and Elena Bekyarova. 2023. "Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells" Materials 16, no. 6: 2218. https://doi.org/10.3390/ma16062218
APA StyleMkawi, E. M., Al-Hadeethi, Y., Arkook, B., & Bekyarova, E. (2023). Doping with Niobium Nanoparticles as an Approach to Increase the Power Conversion Efficiency of P3HT:PCBM Polymer Solar Cells. Materials, 16(6), 2218. https://doi.org/10.3390/ma16062218