Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section and Materials
2.2. Instrumentation Methods
2.3. Synthesis of Curcumin-Based Bzo Monomer
2.4. Preparation of Polybenzoxazine [Poly(Cu-A)]
2.5. Electrochemical Studies
2.6. Antibiofilm Potency of Poly(Cu-A) against C. albicans
2.7. Yeast Hyphae-Switch Assay
2.8. Time–Kill Kinetics
2.9. Reactive Oxygen Species Assay
2.10. Architecture of C. albicans Biofilm
2.11. In Vivo Toxicity Assessment of Poly(Cu-A) on C. elegans
2.12. In Vitro Seed Germination Toxicity Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. Structure Analysis of Cu-A-Bzo
3.2. Curing Behavior of Cu-A-Bzo
3.3. Thermal Stability of Poly(Cu-A)
3.4. PDP and EIS Investigations
- = the corrosion current density without inhibitor;
- = the corrosion current density with inhibitor.
- = the charge transfer resistance with inhibitor;
- = the charge transfer resistance without inhibitor.
3.5. Antibiofilm Potency and SEM Analysis Poly(Cu-A) PCs Treated C. albicans
3.6. Rapid Killing Activity
3.7. ROS Assay
3.8. In Vitro and In Vivo, and Environmental Toxicities of Poly(Cu-A)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, W.; Zhang, X.; Ji, Y.; Zhao, Z.; Li, W.; Jia, X. Sustainable preparation of bio-based polybenzoxazine resins from amino acid and their application in CO2 adsorption. ACS Sustain. Chem. Eng. 2019, 7, 17313–17324. [Google Scholar] [CrossRef]
- Oliveira, J.R.; Kotzebue, L.R.V.; Freitas, D.B.; Mattos, A.L.A.; da Costa Júnior, A.E.; Mazzetto, S.E.; Lomonaco, D. Towards novel high-performance bio-composites: Polybenzoxazine-based matrix reinforced with Manicaria saccifera fabrics. Compos. B. Eng. 2020, 194, 108060. [Google Scholar] [CrossRef]
- Peng, C.; Wu, Z.; Zhou, D. Synthesis of a benzoxazine-type dispersant and its application on epoxy/benzoxazine/ZrO2 composite: Dispersion performance and tensile behavior. Compos. B. Eng. 2019, 167, 507–516. [Google Scholar] [CrossRef]
- Gul, P.; Bakht, J. Antimicrobial activity of turmeric extract and its potential use in food industry. J. Food Sci. Technol. 2015, 52, 2272–2279. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Ao, M.; Dong, B.; Jiang, Y.; Yu, L.; Chen, Z.; Hu, C.; Xu, R. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des. Devel. Ther. 2021, 15, 4503–4525. [Google Scholar] [CrossRef]
- Barry, J.; Fritz, M.; Brender, J.R.; Smith, P.E.S.; Lee, D.K.; Ramamoorthy, A. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: The case of the antioxidant curcumin. J. Am. Che. Soc. 2009, 131, 4490–4498. [Google Scholar] [CrossRef] [Green Version]
- Das, R.K.; Kasoju, N.; Bora, U. Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 153–160. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Singh, M.; Chauhan, D.; Das, A.K.; Iqbal, Z.; Solanki, P.R. PVA/PMMA polymer blended composite electrospun nanofibers mat and their potential use as an anti-biofilm product. J. App. Poly Sci. 2021, 138, 50340. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Teng, W.; Zhou, X.; Ye, Y.; Zhou, H.; Sun, H.; Wang, F.; Liu, A.; Lin, P.; et al. An orthobiologics-free strategy for synergistic photocatalytic antibacterial and osseointegration. Biomaterials 2021, 274, 120853. [Google Scholar] [CrossRef]
- Mystkowska, J.; Mazurek-Budzyńska, M.; Piktel, E.; Niemirowicz, K.; Karalus, W.; Deptuła, P.; Pogoda, K.; Łysik, D.; Dąbrowski, J.; Rokicki, G.; et al. Assessment of aliphatic poly(ester-carbonate-urea-urethane)s potential as materials for biomedical application. J. Poly. Res. 2017, 24, 144. [Google Scholar] [CrossRef] [Green Version]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cauda, R. Candidaemia in patients with an inserted medical device. Drugs 2009, 69, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Kojic, E.M.; Darouiche, R.O. Candida infections of medical devices. Clin. Microbiol. Rev. 2004, 17, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.C.A.; Sorrell, T.C. Antifungal agents. Med. J. Aust. 2007, 187, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Thirukumaran, P.; Shakila, A.; Sarojadevi, M. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv. 2014, 4, 7959–7966. [Google Scholar] [CrossRef]
- Verma, D.K.; Kazi, M.; Alqahtani, M.S.; Syed, R.; Berdimurodov, E.; Kaya, S.; Salim, R.; Asatkar, A.; Haldhar, R. N–hydroxybenzothioamide derivatives as green and efficient corrosion inhibitors for mild steel: Experimental, DFT and MC simulation approach. J. Mol. Struct. 2021, 1241, 130648. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A.; Kumar, R. Experimental and theoretical studies of Ficus religiosa as green corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. Sustain. Chem. Pharm. 2018, 9, 95–105. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxen, A. Armoracia rusticana as sustainable and eco-friendly corrosion inhibitor for mild steel in 0.5M sulphuric acid: Experimental and theoretical investigations. J. Environ. Chem. Eng. 2018, 6, 5238. [Google Scholar] [CrossRef]
- El-Aouni, N.; Hsissou, R.; Safi, Z.; Abbout, S.; Benhiba, F.; El Azzaoui, J.; Haldhar, R.; Wazzan, N.; Guo, L.; Erramli, H.; et al. Performance of two new epoxy resins as potential corrosion inhibitors for carbon steel in 1M HCl medium: Combining experimental and computational approaches. Colloids Surf. A Physicochem. Eng. Asp. 2021, 626, 127066. [Google Scholar] [CrossRef]
- Dagdag, O.; Guo, L.; Safi, Z.; Verma, C.; Ebenso, E.E.; Wazzan, N.; Masroor, S.; Haldhar, R.; Jodeh, S.; El Gouri, M. Epoxy resin and TiO2 composite as anticorrosive material for carbon steel in 3% NaCl medium: Experimental and computational studies. J. Mol. Liq. 2020, 317, 114249. [Google Scholar] [CrossRef]
- Raorane, C.J.; Lee, J.H.; Kim, Y.G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and antivirulence efficacies of flavonoids and curcumin against Acinetobacter baumannii. Front. Microbiol. 2019, 10, 990. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Methods for Broth Dilultion Antifungal Susceptibility Testing of Yeasts Standard, 4th ed.; M27; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Raj, V.; Kim, Y.; Kim, Y.-G.; Lee, J.-H.; Lee, J. Chitosan-gum arabic embedded alizarin nanocarriers inhibit biofilm formation of multispecies microorganisms. Carbohy. Poly. 2021, 284, 118959. [Google Scholar] [CrossRef]
- Raorane, C.J.; Lee, J.-H.; Lee, J. Rapid killing and biofilm inhibition of multidrug-resistant Acinetobacter baumannii strains and other microbes by iodoindoles. Biomolecules 2020, 10, 1186. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Sharma, P.; Capalash, N. Curcumin alleviates persistence of Acinetobacter baumannii against colistin. Sci. Rep. 2018, 8, 11029. [Google Scholar] [CrossRef] [Green Version]
- Rajasekharan, S.K.; Raorane, C.J.; Lee, J. A facile and modified scheme for synchronization and isolation of nematode eggs. Agriculture 2021, 11, 676. [Google Scholar] [CrossRef]
- Rajasekharan, S.K.; Raorane, C.J.; Lee, J. LED based real-time survival bioassays for nematode research. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Raj, V.; Raorane, C.J.; Lee, J.-H.; Lee, J. Appraisal of chitosan-gum arabic-coated bipolymeric nanocarriers for efficient dye removal and eradication of the plant pathogen Botrytis cinerea. ACS App. Mat. Inter. 2021, 13, 47354–47370. [Google Scholar] [CrossRef]
- Raorane, C.J.; Raj, V.; Lee, J.-H.; Lee, J. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches. Inter. J. Food Microbio. 2022, 362, 109492. [Google Scholar] [CrossRef]
- Liu, J.; Lu, X.; Xin, Z.; Zhou, C. Synthesis and surface properties of low surface free energy silane-functional polybenzoxazine films. Langmuir 2013, 29, 411–416. [Google Scholar] [CrossRef]
- Agag, T.; Takeichi, T. Synthesis and characterization of benzoxazine resin-SiO2 hybrids by sol-gel process: The role of benzoxazine-functional silane coupling agent. Polymer 2011, 52, 2757–2763. [Google Scholar] [CrossRef]
- Zhao, S.; Pei, L.; He, J. Curing mechanism, thermal and ablative properties of hexa-(4-amino-phenoxy) cyclotriphosphazene/benzoxazine blends. Compos. B Eng. 2021, 216, 108838. [Google Scholar] [CrossRef]
- Arslan, M.; Kiskan, B.; Yagci, Y. Benzoxazine-based thermosets with autonomous self-healing ability. Macromolecules 2015, 48, 1329–1334. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, D.; Haldhar, R. Use of Sida cordifolia extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J. Environ. Chem. Eng. 2018, 6, 694–700. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, D.; Haldhar, R. Investigation of corrosion inhibition effect and adsorption activities of Achyranthes aspera Extract for Mild Steel in 0.5 M H2SO4. J. Fail. Anal. Prev. 2018, 18, 957–968. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, D.; Haldhar, R. Use of Saraca ashoka extract as green corrosion inhibitor for mild steel in 0.5 M H2SO4. J. Mol. Liq. 2018, 258, 89–97. [Google Scholar] [CrossRef]
- Haldhar, R.; Kim, S.C.; Prasad, D. Papaver somniferum as an efficient corrosion inhibitor for iron alloy in acidic condition: DFT, MC simulation, LCMS and electrochemical studies. J. Mol. Struct. 2021, 1242, 130822. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saharan, H. Performance of Pfaffia paniculata extract towards corrosion mitigation of low-carbon steel in an acidic environment. Int. J. Ind. Chem. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D. Corrosion Resistance and Surface Protective performance of waste material of Eucalyptus globulus for low carbon steel. J. Bio-Tribo-Corros. 2020, 6, 48. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bahadur, I. Evaluation of Gloriosa superba seeds extract as corrosion inhibition for low carbon steel in sulfuric acidic medium: A combined experimental and computational studies. J. Mol. Liq. 2021, 323, 114958. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Bhardwaj, N. Surface adsorption and corrosion resistance performance of Acacia concinna Pod Extract: An efficient inhibitor for mild steel in acidic environment. Arab J. Sci. Eng. 2020, 45, 131–141. [Google Scholar] [CrossRef]
- Haldhar, R.; Prasad, D.; Saxena, A. Myristica fragrans extract as an eco-friendly corrosion inhibitor for mild steel in 0.5 M H2SO4 solution. J. Environ. Chem. Eng. 2018, 6, 2290–2301. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.; Shanmugam, M.; Kim, S.C. Development of sustainable and antimicrobial film based on polybenzoxazine and cellulose. Int. J. Biol. Macromol. 2021, 170, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Bo, C.; Sha, Y.; Song, F.; Zhang, M.; Hu, l.; Jia, p.; Zhou, Y. Renewable benzoxazine-based thermosets from cashew nut: Investigating the self-healing, shape memory, recyclability and antibacterial activity. J. Clean. Prod. 2022, 341, 130898. [Google Scholar] [CrossRef]
- Yadav, N.; Monisha, M.; Niranjan, R.; Dubey, A.; Patil, S.; Priyadarshini, R.; Lochab, B. Antibacterial performance of fully biobased chitosan-grafted-polybenzoxazine films: Elaboration and properties of released material. Carbohydr. Polym. 2021, 254, 117296. [Google Scholar] [CrossRef]
- Periyasamy, T.; Asrafali, S.P.; Raorane, C.J.; Raj, V.; Shastri, D.; Kim, S.-C. Sustainable Chitosan/Polybenzoxazine Films: Synergistically Improved Thermal, Mechanical, and Antimicrobial Properties. Polymers 2023, 15, 1021. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, X.; Wang, H. Construction of novel benzoxazine-linked covalent organic framework with antimicrobial activity via postsynthetic cyclization. Mater. Today Chem. 2022, 23, 100707. [Google Scholar] [CrossRef]
- Alper-Hayta, S.; Aki-Sener, E.; Tekiner-Gulbas, B. Synthesis, antimicrobial activity and QSARs of new benzoxazine-3-ones. European J. Med. Chem. 2006, 41, 1398–1404. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, G.; Li, Y. In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob. Agents Chemother. 2012, 56, 3250–3260. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.A.; Qasim, M.; Singh, B.R. Polyaniline/CoFe2O4 nanocomposite inhibits the growth of Candida albicans 077 by ROS production. Comptes Rendus Chim. 2014, 17, 91–102. [Google Scholar] [CrossRef]
- Yadav, T.C.; Gupta, P.; Saini, S.; Mohiyuddin, S.; Pruthi, V.; Prasad, R. Plausible mechanistic insights in biofilm eradication potential against Candida spp. using in situ-synthesized tyrosol-functionalized chitosan gold nanoparticles as a versatile antifouling coating on implant surfaces. ACS Omega 2022, 7, 8350–8363. [Google Scholar] [CrossRef] [PubMed]
- Widmayer, S.J.; Crombie, T.A.; Nyaanga, J.N.; Evans, K.S.; Andersen, E.C. C. elegans toxicant responses vary among genetically diverse individuals. Toxicology 2022, 479, 153292. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.K.; Lee, J.H.; Lee, J. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb. Biotechnol. 2018, 11, 1060–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sochová, I.; Hofman, J.; Holoubek, I. Using nematodes in soil ecotoxicology. Environ. Int. 2006, 32, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Duan, H.; Zou, J.; Zhang, J.; Wan, C.; Zhang, C.; Ma, H. Bio-based phosphorus-containing benzoxazine towards high fire safety, heat resistance and mechanical properties of anhydride-cured epoxy resin. Polym. Degrad. Stab. 2022, 198, 109878. [Google Scholar] [CrossRef]
- Periyasamy, T.; Raorane, C.J.; Haldhar, R.; Asrafali, S.P.; Kim, S.C. Development of arbutin based sustainable polybenzoxazine resin for antifouling and anticorrosion of low carbon steel. Prog. Org. Coat. 2022, 170, 106968. [Google Scholar] [CrossRef]
- Rajasekharan, S.K.; Raorane, C.J.; Lee, J. Nematicidal effects of piperine on the pinewood nematode Bursaphelenchus xylophilus. J. Asia Pac. Entomol. 2020, 23, 863–868. [Google Scholar] [CrossRef]
Sample (µg/mL) | (Ω cm2) | (Ω cm2) | (µF/cm2) | IE (%) | (mV) | (mA/cm2) | (mV/dec) | (mV/dec) | IE (%) |
---|---|---|---|---|---|---|---|---|---|
Blank | 0.54 | 5.59 | 1352.80 | - | 399.57 | 11.25 | 116.56 | 171.86 | - |
50 | 0.73 | 11.32 | 951.64 | 50.62 | 322.51 | 5.58 | 85.06 | 114.24 | 50.40 |
100 | 0.74 | 19.37 | 667.80 | 71.14 | 350.35 | 3.01 | 94.72 | 145.76 | 73.24 |
200 | 0.85 | 79.07 | 577.60 | 92.93 | 382.79 | 0.83 | 112.11 | 129.21 | 92.62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raorane, C.J.; Periyasamy, T.; Haldhar, R.; Asrafali, S.P.; Raj, V.; Kim, S.-C. Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities. Materials 2023, 16, 2249. https://doi.org/10.3390/ma16062249
Raorane CJ, Periyasamy T, Haldhar R, Asrafali SP, Raj V, Kim S-C. Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities. Materials. 2023; 16(6):2249. https://doi.org/10.3390/ma16062249
Chicago/Turabian StyleRaorane, Chaitany Jayprakash, Thirukumaran Periyasamy, Rajesh Haldhar, Shakila Parveen Asrafali, Vinit Raj, and Seong-Cheol Kim. 2023. "Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities" Materials 16, no. 6: 2249. https://doi.org/10.3390/ma16062249
APA StyleRaorane, C. J., Periyasamy, T., Haldhar, R., Asrafali, S. P., Raj, V., & Kim, S. -C. (2023). Synthesis of Bio-Based Polybenzoxazine and Its Antibiofilm and Anticorrosive Activities. Materials, 16(6), 2249. https://doi.org/10.3390/ma16062249