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Abstract: How to prescribe traction on boundary surface is still an open question in peridynamics.
This problem is investigated in this paper. Through introducing the induced body force defined by
boundary traction, the Silling’s peridynamic motion equation is extended to a new formulation called
the traction-associated peridynamic motion equation, which is verified to be compatible with the
conservation laws of linear momentum and angular momentum. The energy conservation equation
derived from the traction-associated peridynamic motion equation has the same form as that in
the original peridynamics advanced by Silling. Therefore, the constitutive models of the original
peridynamics can be directly applied to the traction-associated peridynamic motion equation. Some
benchmark examples in the plane stress problems are calculated. The numerical solutions agree
well with the classical elasticity solutions, and the volume correction and the surface correction
are no longer needed in the numerical algorithm. These results show that the traction-associated
peridynamic motion equation not only retains all advantages of the original peridynamics, but also
can conveniently deal with the complex traction boundary conditions.

Keywords: peridynamics; traction-associated peridynamic motion equation; traction boundary
condition; bond-based constitutive model

1. Introduction

Peridynamics (PD) is a nonlocal continuum theory of mechanics developed in the re-
cent two decades [1–5]. Its core consists in that a weighted integral of relative displacement
over spatial domain is used instead of the gradient of displacement (strain) in the governing
equations of deformation. Therefore, peridynamics can be used to conveniently and effec-
tively analyze deformation companied with evolution of discontinuities. Peridynamics was
firstly proposed by Silling [1] and then further improved by Silling and his collaborators [2].
Since then, it has been applied to investigate various problems associated with wave,
damage, fracture, and impact breakage [3–9]. However, the traction boundary condition is
incompatible with peridynamics because the governing equation of original peridynamics
appears in the form of an integro-differential equation and does not involve the gradient
with respect to spatial position. Therefore, boundary conditions cannot be imposed as
naturally in the original peridynamics as in Classical Continuum Mechanics (CCM). A
question therefore arises: how to incorporate suitable traction boundary condition?

Recalling the ways of the traction boundary condition is imposed in peridynamics, we
can roughly divide them into three types. The first method [10] is to convert the traction
on the boundary surface into the body force in an inner boundary layer according to
the static force equivalence. The body force is usually supposed to uniformly distribute
in the boundary layer, and the thickness of the inner boundary layer is taken as the
spacing between material points. The second type of method is still based on the original
peridynamics motion equation, but some modifications or operations will be performed
to achieve the purpose of directly imposing traction boundary conditions. For example, a
method only applicable to the non-ordinary correspondence models in peridynamics is
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proposed in [11], a weak form of peridynamic governing equations is proposed in [12,13],
and a way based on Taylor expansion strategy to impose traction boundary conditions in
ordinary state-based peridynamics is proposed in [14,15]. As the third method, Huang [16]
suggested modifying the peridynamic motion equation to introduce the surface traction.

The traction boundary condition based on the first method is very popular in the-
oretical analysis and numerical calculation. Using this traction boundary condition, the
well-posedness of the linear peridynamics with a given nonlocal kernel has been proved in
mathematics [17,18]. Many numerical computation and analysis for practical problems can
be found in [4,5,8]. However, it is unnatural and unhandy to convert the traction on the
boundary surface to body forces in the inner boundary layer. Specially, when the material
particles are close to the boundary surface or interface, the constitutive parameters need to
be corrected [4,10,19,20]. Consequently, the traction boundary condition based on the first
method is impractical for the sophisticated loading cases and geometrical surface.

If the non-ordinary correspondence models are adopted, the traction boundary con-
dition can be specified directly. However, the non-ordinary correspondence models are
limited due to the zero energy mode [21,22], and there are still some problems to be solved.
The weak form of peridynamic governing equations has some changes comparing with
the original peridynamic governing equation. Although the method of imposing traction
boundary conditions based on Taylor expansion strategy can be successfully used in bond-
based peridynamics, it still needs to set fictitious nodes. As for the model established by
the third method, it is new and promising. Zhou [23] simplified the boundary transfer
functions and proposed a method of imposing traction boundary conditions suitable for
two-dimensional problems for bond-based peridynamics. However, since the three scalar-
typical boundary transfer functions involved in this idea are difficult to determine, it has
not been widely applied yet. Overall, how to characterize the traction boundary condition
in peridynamics is still an open question and thus requires further investigation.

Meshfree discretization has been widely used to solve PD problems [24–26]. However,
the standard discretization scheme is still very expensive for calculating the large-scale
problems such as 3-dimensional problems. A new meshfree scheme [27] is expected to
solve these difficulties.

In PD theory, there is no complete non-local neighborhood of a material point near a
material boundary, resulting in the so-called skin or surface effects. Generally, the surface
effect needs to be corrected to obtain the correct physical results. Various surface effect
correction methods were studied in [10]. In addition, there are also many attempts to
eliminate the surface correction [28–33].

The outline of the paper is as follows. In Section 2, through introducing the induced
body force defined by boundary traction, we propose the traction-associated peridynamic
motion equation and show that it is compatible with the conservation laws of linear mo-
mentum and angular momentum. In Section 3, the energy conservation law is derived
from the traction-associated peridynamic motion equation. Two kinds of the bond-based
constitutive models are discussed. The concrete form of the induced body force is deter-
mined. The prototype microelastic (PMB) constitutive model with the local damage is
briefly introduced. The numerical algorithm is discussed in Section 4. In Section 5, the
traction-associated peridynamic motion equation is used to calculate three benchmark
examples in the plane stress problems. A fracture problem is simulated to verify the effec-
tiveness of traction-associated peridynamic motion equation in the failure analysis. Finally,
we close this paper with summary and comment.

2. The Induced Body Force and Extension of Peridynamic Motion Equation

Let p(x′ ′ ′, t) is a traction exerted at the point x′ ′ ′ on the boundary surface ∂Ωp ⊂ ∂Ω
of a peridynamic media Ω. Due to the nonlocality of peridynamic media, p(x′ ′ ′, t) will
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permeate the interior of Ω and induce a body force bi(x, t) acting at the material particles.
We call bi(x, t) the induced body force, which is represented as

bi(x, t) =
∫

∂Ωp

[
G
(

x, x”’, t
)
· p
(

x
′′′

, t
)]

dAx′′′ . (1)

In Equation (1), G (x, x′ ′ ′, t) is a second-order tensor field called the transfer function
of boundary traction and with the dimension of 1/m3, which reads

G
(

x, x
′′′

, t
)
= P

(
x, x

′′′
, t
)
· S
(

x
′′′

, t
)

, (2)

where  P
(

x, x
′′′

, t
)
= α

(
x
′′′

, x
) (y

′′′−y
)
⊗
(

y
′′′−y

)
(y′′′−y)·(y′′′−y)

S
(

x
′′′

, t
)
=
[∫

Ω P
(

x, x
′′′

, t
)

dVx

]−1
. (3)

In Equation (3), y′ ′ ′ = x′ ′ ′ + u′ ′ ′(x′ ′ ′, t) is the position vector of x′ ′ ′ in the deformed
configuration and u′ ′ ′ = u′ ′ ′(x′ ′ ′, t) is a displacement field on ∂Ωp. α(x′ ′ ′, x) is a weight
function determining the characteristic of G(x, x′ ′ ′, t) and will be discussed in the following.
By Equations (2) and (3), it is easy to verify∫

Ω
G
(

x, x
′′′

, t
)

dVx = I, (4)

where I is the second order unit tensor. Equation (4) is a sufficient and necessary condition
to ensure the compatibility of peridynamic motion equation with total equilibrium of linear
momentum and angular momentum. Next, let us discuss this argument.

By Equation (4), the integrals of Equation (1) and y(x, t) × Equation (1) over Ω lead to∫
Ω

bi(x, t)dVx =
∫

∂Ωp
p
(

x
′′′

, t
)

dAx′′′ (5)

∫
Ω

y(x)× bi(x, t)dVx =
∫

∂Ωp
y
′′′
(

x
′′′
)
× p

(
x
′′′

, t
)

dAx′′′ . (6)

After the induced body force bi(x, t) is introduced, the motion equation of peridynamic
media subjected simultaneously to boundary traction and external body force can be
written as

ρ(x)
..
u(x, t) = bi(x, t) +

∫
Hx

{
T[x, t]〈ξ〉 − T

[
x
′
, t
]
〈−ξ〉

}
dVx′ + b(x, t), (7)

where ξ = x′ − x, Hx is a spherical neighborhood of x with radius δ, T the force vector
state field [2], b(x, t) the external body force, and ρ(x) the mass density. We call Equa-
tion (7) the traction-associated peridynamic motion equation. Clearly, Equation (7) is an
extension of the Silling’s peridynamic motion equation. Let x′ ′ ′∈∂Ωp and x∈Ω. If we
take G(x, x′ ′ ′, t) = H(|x′ ′ ′−x|)I/Vb where H(|x′ ′ ′ − x|) is the dimensionless square wave
function and Vb the volume of the boundary layer of ∂Ωp with the thickness of ∆, then
Equation (1) will degenerate into a common formula when ones deal with the boundary
traction in peridynamics.

By Equations (5) and (6), the integrals of Equation (7) and y(x, t) × Equation (7) over
Ω yield ∫

Ω
ρ(x)

..
u(x, t)dVx =

∫
∂Ωp

p(x, t)dAx +
∫

Ω
b(x, t)dVx (8)

∫
Ω

ρ(x)
·

y(x)× v(x, t)dVx =
∫

∂Ωp
y(x)× p(x, t)dAx +

∫
Ω

y(x)× b(x, t)dVx, (9)
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which describe total equilibrium of linear momentum and angular momentum, respectively.
Therefore, Equation (7) is consistent with the conservation laws of linear momentum and
angular momentum. In addition, it is easy to see that Equation (7) is form-invariant under
the Galileo transformation.

3. Peridynamic Constitutive Model
3.1. Balance Equation of Energy

Let v = v(x) is the velocity field within material, and ε is the internal energy density.
Only elastic deformation is concerned, in peridynamics, total energy conservation can be
represented as

D
Dt

∫
Ω

(
1
2

ρv2 + ρε

)
dV =

∫
Ω

bi · vdVx +
∫

Ω
b · vdV. (10)

Equation (10) can be further written as∫
Ω

ρa · vdV +
∫

Ω
ρ

.
εdV =

∫
Ω

bi · vdVx +
∫

Ω
b · vdV, (11)

where a is acceleration field. In terms of Equation (7), Equation (11) reduces to∫
Ω

ρ
.
εdV =

∫
Ω

{∫
Hx

{
T
[
x
′
, t
]
〈−ξ〉 − T[x, t]〈ξ〉

}
dVx′

}
· vdVx. (12)

Since Hx ⊂ Ω is a compact supported set of T[x′, t]<−ξ> and T[x, t]<ξ>, Equation (12)
can be written as∫

Ω
ρ

.
εdV =

∫
Ω

{∫
Ω

{
T
[
x
′
, t
]
〈−ξ〉 − T[x, t]〈ξ〉

}
dVx′

}
· vdVx. (13)

Exchanging x′ and x, and then using definition of the compact supported set, we have∫
Ω

ρ
.
εdV =

∫
Ω

{∫
Hx

T[x, t]〈ξ〉
[
v
(

x
′
)
− v(x)

]
dVx′

}
dVx. (14)

By the localized hypothesis [34,35], the balance equation of energy is given as follows

ρ
.
ε =

∫
Hx

T[x, t]〈ξ〉
[
v
(

x
′
)
− v(x)

]
dVx′ . (15)

Clearly, Equation (15) has the same form as that in the original peridynamics ad-
vanced by Silling and his collaborators [1,2]. Equation (15) is a basis to determine the
peridynamic constitutive models of hyperelastic material. Therefore, the hyperelastic con-
stitutive models in the original peridynamics can be inherited without modification by the
traction-associated peridynamics.

3.2. Bond-Based Constitutive Models

Bond-based (BB) constitutive models are simplified versions of state-based (SB) consti-
tutive models. For brevity, only the BB constitutive models are considered, not concerned
the SB constitutive models. The BB constitutive models have been systematically estab-
lished by Silling [1], and their forms are not unique. The microelastic models [5] are used
to describe the elastic deformation of isotropic materials. Two commonly used microelastic
models are listed below.

1. General microelastic models:

f
(

u
′ − u,ξ

)
=

c
(∣∣∣y′ − y

∣∣∣− |ξ|) y
′−y
|y′−y| |ξ| ≤ δ

0 otherwise
. (16)
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The linear form of Equation (16) is

f
(

u
′ − u,ξ

)
=

cξ⊗ξ
|ξ|2
·
(

u
′ − u

)
|ξ| ≤ δ

0 otherwise
, (17)

where f(u′−u, ξ) is the force density vector [1] with the dimension of N/m6. The re-
lation between f(u′−u, ξ) and the force vector state T in Equation (7) is represented as
T[x, t] <ξ> =−T [x′, t] <−ξ> == f(u′−u, ξ)/2. The parameter c is called the spring constant
or the bond-constant, which reads [5]

c =


15E
πδ5 3− dimension
12E

πhδ4 2− dimension plane stress
64E

5πhδ4 2− dimension plane strain
3E

h1δ3 1− dimension

, (18)

where E is the Young’s modulus, h the thickness of plate and h1 the cross-sectional area of rod.

2. The prototype microelastic (PM) model:

PM model is another special form of the microelastic models

f
(

u
′ − u,ξ

)
=

c

∣∣∣y′−y
∣∣∣−|ξ|
|ξ|

y
′−y
|y′−y| |ξ| ≤ δ

0 otherwise
. (19)

The linear form of Equation (19) is

f
(

u
′ − u,ξ

)
=

cξ⊗ξ
|ξ|3
·
(

u
′ − u

)
|ξ| ≤ δ

0 otherwise
. (20)

The parameter c in Equations (19) and (20) is still the bond-constant and it takes the
value below [4,5]

c =


12E
πδ4 3− dimension

9E
πhδ3 2− dimension plane stress

48E
5πhδ3 2− dimension plane strain
2E

h1δ2 1− dimension

. (21)

It should be noted that in the BB models, the Poisson’s ratio of 3D and 2D plane strain
problems are fixed at 1/4, while that of 2D plane stress problem are fixed at 1/3.

3.3. Transfer Function of Boundary Traction

According to Equations (2) and (3), the transfer function G(x, x′ ′ ′, t) of the boundary
traction characterizes the change of intensity when the traction is transferred from the
boundary surface to the interior of the body, which is determined by the weight function
α(x′ ′ ′, x). In physics, α(x′ ′ ′, x) should attenuates to zero as it moves away from the boundary
surface. Therefore, α(x′ ′ ′, x) can be defined a function with compact support, i.e.,

α
(

x
′′′

, x
)
=

{
q
(∣∣∣x′′′ − x

∣∣∣) 6= 0
∣∣∣x′′′ − x

∣∣∣ ≤ ι

0 otherwise
, (22)

where x′ ′ ′ ∈ ∂Ωp while x ∈ Ω. ι is a scale parameter. For simplicity, we take ι = δ. As thus,
Equation (22) means that the traction on the boundary surface is dispersed in the boundary
layer with the thickness of δ.
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Consider the quasi-static uniaxial tension of a rod subjected to tensile force p at two
ends. Through the inverse method [36] and the undetermined coefficient method, we find
that when the general microelastic constitutive Equations (16) and (17) are adopted, if α(x′ ′ ′,
x) takes the form below

α(x′′′ , x) =

{
k
(

δ2 − |x′′′ − x|2
)
|x′′′ − x| ≤ δ

0 otherwise
(23)

then the classical elasticity solution of the uniaxial tension can be acquired.
Similarly, when the PM constitutive Equations (19) and (20) are used, if α(x′ ′ ′, x) is

written as

α(x′′′ , x) =

{
k(δ− |x′′′ − x|) |x′′′ − x| ≤ δ

0 otherwise
(24)

the same result is also given. It should be noted that k in Equations (23) and (24) is any
constant and is not zero. For simplicity, we can take k = 1.

Equations (23) and (24) can be extended to 2-dimensional and 3-dimensional form below

α
(

x
′′′

, x
)
=

δ2
∣∣∣x′′′ − x

∣∣∣2 ∣∣∣x′′′ − x
∣∣∣ ≤ δ

0 otherwise
(25)

α
(

x
′′′

, x
)
=

{
δ−

∣∣∣x′′′ − x
∣∣∣ ∣∣∣x′′′ − x

∣∣∣ ≤ δ

0 otherwise
. (26)

Thus, the concrete form of the induced body force is determined due to Equation (25)
or (26), In the following, they will be directly used to analyze benchmark examples of 2D
plane stress problems.

3.4. Prototype Microelastic Brittle Damage Model

In PD theory, local damage at a point is defined as the weighted ratio of the number of
eliminated interactions to the total number of initial interactions of the material point with
its family members, that is [4,19]

ϕ(x, t) = 1−
∫

Hx
µ(ξ, t)dVx′∫
Hx

dVx′
. (27)

It should be noted that the local damage ϕ ranges from 0 to 1. When ϕ = 1, all the
interactions initially associated with the point have been eliminated, while ϕ = 0 means
that all interactions exist. The measurement of the local damage value is an indicator of
the possible formation of cracks within a body. In Equation (27), µ is a history-dependent
scalar-valued function, which reads

µ(ξ, t) =

{
1 s(ξ, t′) < Sc f or all 0 ≤ t′ ≤ t
0 otherwise

, (28)

where Sc is the critical stretch of bond failure, while s is bond stretch defined by

s =

∣∣∣y′ − y
∣∣∣− |ξ|
|ξ| . (29)

Therefore, a simple way to introduce failure into the constitutive model to allow
bonds (springs) to break when they are stretched beyond a predefined limit. After bond
failure, there is no tensile force sustainable in the bond, and once a bond fails, it is failed
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forever (there is no provision for “healing” of a failed bond). As thus, the PMB model to
characterize brittle damage [4,5,19] can be written as

f
(

u
′ − u,ξ, t

)
=

csµ(ξ, t) y
′−y
|y′−y| |ξ| ≤ δ

0 otherwise
. (30)

4. Numerical Algorithm
4.1. Spatial Discretization

Meshfree spatial discrete method [19] is used to discretize continuum into a range of
arbitrary shaped subdomains, in which, the collocation points (nodes) are placed. With
one-point Gauss quadrature strategy [37], the spatial discrete form of Equation (7) can be
written as

ρ(xi)
..
u(xi, t)

= ∑
∂Ωp

G(xi, xk, t) · ¯p(xk, t)Axk + ∑
Hxi

{
T[xi, t]

〈
xj − xi

〉
− T

[
xj, t

]〈
xi − xj

〉}
Vxj + b(xi, t). (31)

The same spatial discrete strategy can be applied to acquire the integral value of
G(x, x′ ′ ′). It is worth noting that the collocation points must also be set on the traction
boundary surface due to the introduction of the boundary integration.

4.2. Time Integration

The adaptive dynamic relaxation (ADR) method [38] is used to solve Equation (31).
After introducing new fictitious inertia and damping terms, Equation (31) is rewritten as

λi
..
un

i + cnλi
.
un

i = Fn
i , (32)

where n is n-th time (iterative) step, λi the fictitious density of the i-th node, and cn the
damping coefficient. The vector Fi

n in Equation (32) is the summation of internal and
external forces, which reads

Fn
i

= ∑
∂Ωp

G(xi, xk, t) · ¯p(xk, t)Axk + ∑
Hxi

{
T[xi, t]

〈
xj − xi

〉
− T

[
xj, t

]〈
xi − xj

〉}
Vxj + b(xi, t). (33)

By the explicit central-difference integration, the iterative scheme of displacements
and velocities can be written as

.
un+ 1

2
i =

(2−cn∆t)
.
u

n− 1
2

i +
2∆tFn

i
λi

2+cn∆t

un+1
i = un

i + ∆t
.
un+ 1

2
i

. (34)

As Equation (34) has an unknown velocity field at t−1/2, the iterative process can be
not started. However, if we assume ui

0 6= 0 and vi
0 = 0, the iteration can be completed

by using
.
u

1
2
i =

∆tF0
i

2λi
. (35)

In this algorithm, since the fictitious density λi, the damping coefficient cn and the
time step ∆t are not actual physical quantities, their values can be chosen so as to make the
convergence of numerical solution as fast as possible. Therefore, we take ∆t = 1, while the
calculation of λi and cn can refer to [4,38–40].
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5. Some Plane Stress Benchmark Problems

The nonlinear PM constitutive model is adopted to analyze some benchmark examples
of the plane stress problems. In calculation, we take the Young’s modulus E = 200 GPa and
the Poisson’s ratio ν = 1/3.

5.1. Example 1: A Rectangular Plate with Two Opposite Edges Subjected to Tension

As shown in Figure 1, the upper and lower edges of an isotropic rectangular plate
are subjected to uniform tension q = 200 MPa. The length of the plate L = 1 m, the width
W = 0.5 m, and the thickness h = ∆.
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The rectangular plate (excepting near the boundary) is uniformly discretized into a
particle set with the equal spacing ∆ in the plane, as shown in Figure 2.
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Figure 2. The spatial discretization of the rectangular plate.

In Figure 2, the black dots represent the collocation points (nodes). Due to the symme-
try of the structure and load, the constrains to rigid-body displacement need be imposed at
the two symmetrical axes of the plate. It is necessary to collocate nodes on the boundary.
The volume of subdomain associated with the boundary node is ∆2h/2 or ∆2h/4.

When the horizon size is specified as δ = 3.015∆, three different grid sizes ∆ = L/50,
L/100, and L/200 are used to show the influence of the grid density on the convergence
and computational accuracy, as illustrated in Figures 3 and 4.
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Figure 4. The displacement along central lines of the rectangular plate: (a) ux along y = 0; (b) uy along
x = 0.

It can be seen from Figure 3 that the numerical calculation converges at the 500th time
step regardless of the grid size. Moreover, Figure 4 shows that the computational results
are close to each other for different grid density, and the errors between them and classical
solutions are all within 5%. Therefore, the numerical algorithm can be considered to satisfy
the δ-convergence requirement [41–44].

When the horizon size is fixed as δ = m∆ = 0.06 m, three different combinations
(∆ = L/50, m = 3; ∆ = L/100, m = 6; ∆ = L/200, m = 12) are used to study m-convergence.
The results are illustrated in Figures 5 and 6.
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tions: (a) ux along y = 0; (b) uy along x = 0.

Figure 5 that the calculation converges very quickly with time step, no matter which
combination mode is adopted. From Figure 6, we see that the numerical results of the three
different combinations agree with each other, and the errors between them and classical
solutions are all within 5%. Therefore, the numerical algorithm is of m-convergence [41–44].

Comparison between Equation (7) and the original PD is carried out through numerical
calculation. Figures 3 and 7 show that the displacements calculated by Equation (7) and
the original PD converges very quickly with time step, and the convergence modes are
similar. As can be seen from Figures 8–10, there exist good matches between predictions
of traction-associated peridynamic motion equation and analytical solutions as well as
original PD predictions.
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Figure 8. The displacement along the bottom side and left side of the rectangular plate subjected to
tension: (a) ux along y = −0.25 m; (b) uy along x = −0.5 m.

In order to balance the computational accuracy and efficiency, in the following, the
horizon size is specified as δ = 3.015∆ and grid size ∆ = L/100. The total time step is set to
3000. The material parameters of plates in all examples are the same as those of the plate in
Figure 1, and the same discretization as Figure 2 is adopted.

5.2. Example 2: A Rectangular Plate Subjected to Bending

As shown in Figure 11, a rectangular plate with the same size as the plate in Figure 1
is subjected to an anti-symmetrically distributed loads with a maximal value q = 200 Mpa.
This is a pure bending problem with the stress boundary condition.
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The convergence analysis is shown in Figure 12. It can be seen that the displacements
calculated by the original PD and Equation (7) converge with time step in the same way,
and completely converge at the 1000th time step.
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The numerical results are illustrated in Figures 13–17, From which, it can be seen that
the displacement distribution predicted by Equation (7) agrees with that by original PD,
and the two have better matching with analytical solutions.
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5.3. Example 3: A Square Plate with A Circular Hole Subjected to Tension by Two Opposite Edges

As shown in Figure 18, a squared plate with central circular hole is subjected to
uniform tension q = 200 MPa. The side length of the plate L = 0.5 m and the radius of the
circular hole r = 0.05 m.

The convergence analysis is shown in Figure 19. It can be seen that the displacements
calculated by the original PD and Equation (7) converge with time step in the same way,
and completely converge at the 500th time step.

The results in Figure 20 show that the displacements given by FEA, PD, and Equation (7)
are close to each other in distribution. The relative error between them is less than 6.7%.
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Figure 19. Convergence of displacement at x = −0.125 m and y = −0.125 m with time step.

5.4. Example 4: Failure of A Square Plate with A Circular Hole under Quasi-Static Loading

We continue to investigate the fracture of the plate with central circular hole under
tension. As shown in Figure 21, in order to avoid nodes occurring at the propagation
path of cracks, all nodes (red and black dots) have been anew collocated. The grid size is
taken as ∆ = L/100. The nodes on the boundary surface (red dots) are only involved in the
integration of the boundary traction and correspond to a volume of 0. In calculation, the
critical stretch Sc of bond failure takes 0.0058.

The propagation of crack is characterized by the value of the damage ϕ. When the
load q arrives at 380 MPa, the plate breaks due to cracking. Figure 22 shows the damage ϕ
calculated by the original PD. At the 500th time step, the crack initiates from two sides of
the hole. As the time step increases to 700, the crack propagates and the damage ϕ reaches
0.479. As the time step continues to increase, the plate breaks at the 900th time step.
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Figure 22. Damage plots for the square plate with a circular hole at the end of different time steps
based on original PD: (a) 500 time steps; (b) 700 time steps; (c) 900 time steps.

The damage ϕ calculated by Equation (7) is illustrated in Figure 23. The results show
that the crack initiates at the 700th time step, and at the 900th time step, the damage ϕ of
the crack propagation reaches 0.42. When the time step arrives at 1125, the plate fails due
to cracking.
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Figure 23. Damage plots for the square plate with a circular hole at the end of different time steps
based on Equation (7): (a) 700 time steps; (b) 900 time steps; (c) 1125 time steps.
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6. Conclusions

Through introducing the induced body force defined by boundary traction, the
Silling’s peridynamic motion equation is extended to the traction-associated peridynamic
motion equation. From investigation on this equation, the conclusions are summarized
as follows.

• The traction-associated peridynamic motion equation is consistent with the conser-
vation laws of linear and angular momentum, and it is form-invariant under the
Galileo transformation.

• The constitutive models in the original peridynamics can be inherited without mod-
ification by the traction-associated peridynamics. The concrete form of the induced
body force is determined by matching with the constitutive models.

• Numerical calculations for the typical plane stress problems are in good agreement
with the classical elasticity solutions, and the volume correction and the surface
correction are no longer needed in the numerical algorithm.
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