Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Specimens
2.2. Test Methods
2.3. Post-Test Examinations
3. Results and Discussion
3.1. Appearance
3.2. Quantification
3.3. Micro-Structure Observation
3.3.1. T91
3.3.2. 9Cr ODS
3.3.3. 9CrAl ODS
3.3.4. Corrosion Resistance Mechanism of 9CrAl ODS
4. Conclusions
- The surface color and luster of the different corrode materials were quite different. The color of T91 is abundant with a metallic luster due to the formation of complex oxidation products and attached lead. Most of the surface of 9Cr ODS is gray-white with a metallic luster due to the covered metallic lead. The color of the 9CrAl surface is quite uniform without metallic luster;
- The corrosion of 9Cr ODS is slightly heavier than that of T91 after corrosion for 1000 h. An oxide layer that grows outward is locally formed outside of T91, which plays a certain positive role in corrosion resistance, while the fine-grained structure of ODS steel promotes the accelerated dissolution of Fe and Cr, resulting in a lower rate of formation of oxidation products;
- The maximum corrosion depth of 9CrAl ODS is 51.8 μm after corrosion for 2000 h, which is much lower than that of 9Cr-ODS steel. The reduction ratio is about 40%. Although the addition of Al cannot prevent dissolution corrosion for 9Cr ODS steel completely, it shows a positive impact on the corrosion mode and corrosion products due to the formation of a protective product containing Al/Cr.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hayashi, T.; Sarosi, P.M.; Schneibel, J.H.; Mills, M.J. Creep response and deformation processes in nanocluster-strengthened ferritic steels. Acta Mater. 2008, 56, 1407–1416. [Google Scholar] [CrossRef]
- Alemberti, A. Lead Cooled Fast Reactors; Elsevier: Amsterdam, The Netherlands, 2021; pp. 523–544. [Google Scholar]
- Mukhopadhyay, D.K.; Froes, F.H.; Gelles, D.S. Development of oxide dispersion strengthened ferritic steels for fusion. J. Nucl. Mater. 1998, 258–263, 1209–1215. [Google Scholar] [CrossRef]
- Ramar, A.; Spätig, P.; Schaublin, R. Analysis of high temperature deformation mechanism in ODS EUROFER97 alloy. J. Nucl. Mater. 2008, 382, 210–216. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, L. Review of the studies on fundamental issues in LBE corrosion. J. Nucl. Mater. 2008, 373, 351–377. [Google Scholar] [CrossRef]
- Dou, P.; Kimura, A.; Kasada, R.; Okuda, T.; Inoue, M. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened steel with Zr addition. J. Nucl. Mater. 2014, 444, 446–453. [Google Scholar] [CrossRef]
- Dou, P.; Kimura, A.; Okuda, T.; Inoue, M.; Ukai, S.; Fujisawa, T.; Abe, F. Effects of extrusion temperature on the nano-mesoscopic structure and mechanical properties of an Al-alloyed high-Cr ODS ferritic steel. J. Nucl. Mater. 2011, 417, 166–170. [Google Scholar] [CrossRef]
- Ukai, S.; Fujiwara, M. Perspective of ODS alloys application in nuclear environments. J. Nucl. Mater. 2002, 307, 749–757. [Google Scholar] [CrossRef]
- Müller, G.; Schumacher, G.; Zimmermann, F. Investigation on oxygen controlled liquid lead corrosion of surface treated steels. J. Nucl. Mater. 2000, 278, 85–95. [Google Scholar] [CrossRef]
- Ballinger, R.; Lim, J. An Overview of Corrosion Issues for the Design and Operation of High-Temperature Lead- and Lead-Bismuth-Cooled Reactor Systems. Nucl. Technol. 2004, 147, 418–435. [Google Scholar] [CrossRef]
- Giacco, M.D.; Weisenburger, A.; Jianu, A.; Lang, F.; Mueller, G. Influence of composition and microstructure on the corrosion behavior of different Fe-Cr-Al alloys in molten LBE. J. Nucl. Mater. 2012, 421, 39–46. [Google Scholar] [CrossRef]
- Yeliseyeva, O.; Tsisar, V.; Zhou, Z.J. Corrosion behavior of Fe-14Cr-2W and Fe-9Cr-2W ODS steels in stagnant liquid Pb with different oxygen concentration at 550 and 650 °C. J. Nucl. Mater. 2013, 442, 434–443. [Google Scholar] [CrossRef]
- Takaya, S.; Furukawa, T.; Müller, G.; Heinzel, A.; Jianu, A.; Weisenburger, A.; Aoto, K.; Inoue, M.; Okuda, T.; Abe, F. Al-containing ODS steels with improved corrosion resistance to liquid lead-bismuth. J. Nucl. Mater. 2012, 428, 125–130. [Google Scholar] [CrossRef]
- Brady, M.P.; Unocic, K.A.; Lance, M.J.; Santella, M.L.; Yamamoto, Y.; Walker, L.R. Increasing the upper temperature oxidation limit of alumina forming austenitic stainless steels in air with water vapor. Oxid. Met. 2011, 75, 337–357. [Google Scholar] [CrossRef]
- Brady, M.P.; Yamamoto, Y.; Santella, M.L.; Walker, L.R. Composition, microstructure, and water vapor effects on internal/external oxidation of alumina-forming austenitic stainless steels. Oxid. Met. 2009, 72, 311–333. [Google Scholar] [CrossRef]
- Brady, M.P.; Wright, I.G.; Gleeson, B. Alloy design strategies for promoting protective oxide-scale formation. JOM 2000, 52, 16–21. [Google Scholar] [CrossRef]
- Unocic, K.A.; Hoelzer, D.T. Evaluation of Pb-17Li compatibility of ODS Fe-12Cr-5Al alloys. J. Nucl. Mater. 2016, 479, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.; Kasada, R.; Iwata, N.; Kishimoto, H.; Zhang, C.H.; Isselin, J.; Dou, P.; Lee, J.H.; Muthukumar, N.; Okuda, T. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems. J. Nucl. Mater. 2011, 417, 176–179. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, Z.J.; Long, F.; Jia, H.D.; Guo, N.; Yao, Z.W.; Daymond, M.R. Combination of back stress strengthening and Orowan strengthening in bimodal structured Fe-9Cr-Al ODS steel with high Al addition. Mater. Sci. Eng. A 2019, 739, 45–52. [Google Scholar] [CrossRef]
- Zhang, G.M.; Mo, K.; Miao, Y.B.; Liu, X.; Almer, J.; Zhou, Z.J.; Stubbins, J. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures. Mater. Sci. Eng. A 2015, 637, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Carsten, S.; Olaf, W.; Juergen, K. Aspects of minimizing steel corrosion in liquid lead-alloys by addition of oxygen. Nucl. Eng. Des. 2011, 241, 4913–4923. [Google Scholar]
- Carsten, S.; Olaf, W.; Josef, N.; Aleksandr, S.; Jürgen, K. Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550 °C, and 10−6 mass% dissolved oxygen. Nucl. Eng. Des. 2014, 280, 661–672. [Google Scholar]
- Barbier, F.; Fazio, C.; Rusanov, A.; Benamati, G. Compatibility tests of steels in flowing liquid lead-bismuth. J. Nucl. Mater. 2001, 295, 149–156. [Google Scholar] [CrossRef]
- Schroer, C.; Konys, J.; Furukawa, T.; Aoto, K. Oxidation behaviour of P122 and a 9Cr-2W ODS steel at 550 °C in oxygen-containing flowing lead-bismuth eutectic. J. Nucl. Mater. 2010, 398, 109–115. [Google Scholar] [CrossRef]
- Dou, P.; Kimura, A.; Okuda, T. Polymorphic and coherency transition of Y-Al complex oxide particles with extrusion temperature in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel. Acta Mater. 2011, 59, 992–1002. [Google Scholar] [CrossRef]
Materials | Fe | Cr | Si | Ti | W | Y | O | N | C | Al | Mo | Mn |
---|---|---|---|---|---|---|---|---|---|---|---|---|
9Cr-ODS | Bal. | 8.9 | 0.24 | 0.45 | 1.80 | 0.15 | 0.16 | 0.02 | 0.06 | - | - | - |
9CrAl-ODS | Bal. | 8.9 | 0.24 | - | 1.80 | 0.15 | 0.18 | 0.02 | 0.06 | 4.50 | - | - |
T91 | Bal. | 8.5 | 0.28 | 0.001 | 0.001 | - | - | - | 0.08 | 0.015 | 0.84 | 0.59 |
Materials | T91 | 9Cr-ODS | 9CrAl-ODS |
---|---|---|---|
1000 h | T-1 | 9a-1 | - |
2000 h | - | 9a-2 | 9b-2 |
T-1 | 9a-1 | 9a-2 | 9b-2 | |
---|---|---|---|---|
Corrosion area | 41% | 50% | 58% | 58% |
Average depth (μm) | 32.2 | 17.27 | 48.3 | 40.9 |
Maximum depth (μm) | 52.04 | 53.5 | 86.8 | 51.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Xu, S.; Schroer, C.; Jia, H.; Ruan, Z.; Qin, B.; Zhou, Z.; Long, B. Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb. Materials 2023, 16, 2295. https://doi.org/10.3390/ma16062295
Chen L, Xu S, Schroer C, Jia H, Ruan Z, Qin B, Zhou Z, Long B. Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb. Materials. 2023; 16(6):2295. https://doi.org/10.3390/ma16062295
Chicago/Turabian StyleChen, Lingzhi, Shuai Xu, Carsten Schroer, Haodong Jia, Zhangshun Ruan, Bo Qin, Zhangjian Zhou, and Bin Long. 2023. "Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb" Materials 16, no. 6: 2295. https://doi.org/10.3390/ma16062295
APA StyleChen, L., Xu, S., Schroer, C., Jia, H., Ruan, Z., Qin, B., Zhou, Z., & Long, B. (2023). Comparison of Corrosion Behavior of T91, 9Cr and 9CrAl ODS Steels in Liquid Pb. Materials, 16(6), 2295. https://doi.org/10.3390/ma16062295