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Abstract: Bone tissue engineering (BTE) is an active area of research for bone defect treatment.
Some polymeric materials have recently gained adequate attention as potential materials for BTE
applications, as they are biocompatible, biodegradable, inexpensive, lightweight, easy to process, and
recyclable. Polyetherimide (PEI), acrylonitrile butadiene styrene (ABS), and polyamide-12 (PA12)
are potential biocompatible materials for biomedical applications due to their excellent physical,
chemical, and mechanical properties. The current study presents preliminary findings on the process
simulations for 3D-printed polymeric porous scaffolds for a material extrusion 3D printing (ME3DP)
process to observe the manufacturing constraints and scaffold quality with respect to designed
structures (porous scaffolds). Different unit cell designs (ventils, grid, and octet) for porous scaffolds,
virtually fabricated using three polymeric materials (PEI, ABS, and PA12), were investigated for
process-induced defections and residual stresses. The numerical simulation results concluded that
higher dimensional accuracy and control were achieved for grid unit cell scaffolds manufactured
using PEI material; however, minimum residual stresses were achieved for grid unit cell scaffolds
fabricated using PA12 material. Future studies will include the experimental validation of numerical
simulation results and the biomechanical performance of 3D-printed polymeric scaffolds.
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1. Introduction

Bone tissue engineering (BTE) is an active area of research for bone defect treatment [1–4],
in which bio-scaffolds are implanted to heal the bone damage caused by accidents, infections,
or tumors [5]. The scaffold is essential in providing a template for cell adhesion, cell prolifera-
tion, and structural support to newly formed bone [6]. Metals, alloys, polymers, ceramics, and
composites are commonly used for such applications [7–9]. However, some limitations prevail
in the widespread use of each class of materials, such as mismatch of mechanical properties
for metals, insufficient mechanical properties of polymers, the release of metallic ions in the
case of alloys, and brittleness in ceramics [10–13].

The search for biomaterials in BTE applications is ongoing to achieve the desired
physical, mechanical, and biological properties of scaffolds. Some polymeric materials
have recently gained adequate attention as potential materials for biomedical applications,
as they are biocompatible, biodegradable, inexpensive, lightweight, easy to process, and
recyclable [14]. Polylactic acid (PLA) [15,16], poly (lactic-co-glycolic acid) (PLGA) [17],
polycaprolactone (PCL) [18], and polyether ether ketone (PEEK) [19] are FDA-approved
biomaterials [20]. These materials possess significant mechanical properties compara-
ble to the natural bone; therefore, they can act as load-bearing prosthetic elements [21].
Polyetherimide (PEI) is another biocompatible material under investigation for biomedical
applications due to its excellent physical, chemical, and mechanical properties [22]. In
addition, PEI is observed to have stiffness and physiological structure in charge transfer
comparable to natural bone [23].
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The scaffold is expected to allow for the flow of body fluids through interconnected
porous structures and provide a template for cell growth [24,25]. However, the fabrication
of such complex structures is crucial, and the manufacturing process should provide
high reproducibility and accuracy [26]. Metal powder sintering [27], polymeric sponge
replication [28], investment casting [29], and gas foaming [30] are some conventional
manufacturing processes used for the fabrication of 3D scaffolds. The research on the
manufacturing of porous scaffolds is mainly at the lab scale; however, the recent innovations
in biomaterials for such applications have opened up the opportunity to adopt advanced
manufacturing processes as an alternative to producing on-demand porous scaffolds for
BTE precisely and accurately [31]. Therefore, advanced manufacturing techniques, such
as additive manufacturing (AM) or 3D printing (3DP), are rapidly growing in several
sectors [32,33], including biomedical research [34–36]. These processes provide higher
freedom to design and rapidly fabricate complex structures (such as 3D porous scaffolds)
with higher precision and accuracy and lower material wastage [37].

Several studies reported using AM processes to fabricate porous scaffolds for BTE. For
instance, Tang et al. [38] manufactured PEI scaffolds through a 3DP process and evaluated
their physical, mechanical, and biological performance. Likewise, Suffo and Revenga [39]
investigated the biomechanical performance of a commercial polymer (ULTEMTM 1010)
for knee replacement. Polyakov et al. [40] performed thermomechanical analysis on 3D-
printed carbon nanofiber-reinforced PEI nanocomposites. In addition, acrylonitrile buta-
diene styrene (ABS) and polyamide (PA) materials have been investigated for biomedical
applications due to their excellent mechanical properties [41]. Alblooshi [42] reported the
fabrication of chemically functionalized polymeric (PLA, ABS, and polyethylene terephtha-
late (PET)) porous scaffolds using the 3DP process. Alkebsi et al. [43] recently reported a
novel design for 3D-printed variable porosities of porous scaffolds using ABS material. The
mechanical properties of designed scaffolds were evaluated using the finite element method
(FEM), numerical model, and experimental testing. Likewise, Li et al. [44] manufactured
polyamide-12 (PA12)/hydroxyapatite (HA) porous scaffolds with gradient structures using
the selective laser sintering (SLS) process. The effect of porosity and pore type on mechan-
ical properties was analyzed using experimental and FEM simulations. Zhao et al. [45]
designed triply periodic minimal surface (TPMS)-based porous scaffolds fabricated using
pure PA12 and PA12/HA materials via the SLS process. Mechanical and hydrophilicity
tests were conducted to observe the effect of HA addition to the PA12 polymer.

The literature concludes that polymers and their composites can provide low-cost
and reliable BTE scaffolds with significant mechanical properties. Most of the reported
literature mainly utilized experimental techniques for AM of biomaterials; however, nu-
merical modeling and simulation tools can provide an easier, more straightforward, and
inexpensive performance evaluation of 3D-printed structures [46]. The dimensional control
and precision of 3D-printed porous scaffolds for BTE are vital; therefore, it is essential to
evaluate the thermomechanical performance of different materials, designs, and process
parameters to achieve the desired dimensions of the final product [47]. The numerical sim-
ulations can estimate process-induced defects and residual stresses that can be addressed
before fabrication to save resources and costs associated with experimental investigations.
Al Rashid and Koç [48–51] reported experimental validations on deformations, distortions,
and mechanical properties for different materials, product designs, and process parameters
using Digimat software (version 2021.3, from e-Xstream engineering, Käerjeng, Luxem-
bourg). The predictability of Digimat software was found to be in good agreement with the
experimental results.

Given the existing literature in the field of additively manufactured polymer scaffolds,
there is a pressing need to continue the pursuit of potential biomaterials and explore
the manufacturability of complex polymeric scaffold structures. Therefore, in this study,
process simulations for 3D-printed polymeric scaffolds were performed for the material
extrusion 3D printing (ME3DP) process to observe the manufacturing constraints and
scaffold quality with respect to designed geometries. Different scaffold designs (ventils,
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grid, and octet) virtually fabricated with polymeric materials (PEI, ABS, and PA12) were
investigated for process-induced defections and residual stresses.

2. Materials and Methods

The main aim of this study is to analyze the effect of different polymeric materials and
the design of unit cells on dimensional control, accuracy, thermal variations, and residual
stresses of additively manufactured porous scaffolds. The subsequent sections report details
on the design of porous scaffolds, methodology, and ME3DP process simulation setup.

2.1. Design of Porous Scaffolds

The porous scaffolds with variable porosity were designed using a Grasshopper®

plug-in within Rhino 7® software (from Robert McNeel & Associates, Seattle, WA, USA).
Intralattice, a plug-in for Grasshopper® [52], provided an easier and more straightforward
workflow for scaffold design, as shown in Figure 1. Three unit cell designs (ventils, grid, and
octet) were selected for investigation. A unit cell size of 2 mm was chosen for all the unit cell
designs, and five unit cells were produced in each principal direction (i.e., X-, Y-, and Z-axes)
to achieve a cubic porous scaffold with overall dimensions of 10 mm × 10 mm × 10 mm.
The porosity for different unit cell designs was evaluated using Equation (1), where VVoid
refers to the void volume and VTotal refers to the total bound volume of a solid cube
measuring 10 mm × 10 mm × 10 mm. The designed scaffolds exhibited variable porosity
levels of 48%, 67%, and 13% for ventils, grid, and octet scaffolds, respectively. Three
different scaffolds designed using Grasshopper® are reported in Figure 2.

∅ =
VVoid
VTotal

(1)
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2.2. Methodology

Three different unit cell designs (ventils, grid, and octet) for porous scaffolds and three
polymeric materials (PEI, ABS, and PA12) led to a combination of nine numerical simu-
lations, as reported in Table 1. Numerical simulations were performed for each material
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and each unit cell design. The designed scaffolds in STL format were imported to slicing
software (Cura® version 5.0.0, from Ultimaker, Netherlands) to define the toolpath and
ME3DP process parameters. The material extrusion temperatures, build plate temperatures,
and printing speeds were selected based on experience and reported literature (Table 1). A
layer height of 0.1 mm and 100% infill density with a concentric infill pattern were selected,
and g-codes were generated for each case to be used in process simulations.

Table 1. Numerical simulation study design and ME3DP process parameters.

No. Material Unit Cell Design Extrusion
Temperature

Build Plate
Temperature

Printing
Speed (mm/s)

1
PEI

Ventils
360 ◦C 100 ◦C 702 Grid

3 Octet

4
ABS

Ventils
230 ◦C 80 ◦C 555 Grid

6 Octet

7
PA12

Ventils
245 ◦C 60 ◦C 708 Grid

9 Octet

2.3. ME3DP Process Simulation

The thermomechanical numerical simulations for the ME3DP process were performed
within Digimat software [53], providing flexibility to simulate the ME3DP process for
different materials, geometries, and process parameters. The overall workflow for the
ME3DP process simulations is presented in Figure 3.
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First, the 3D model of the designed scaffold was imported into the Digimat-AM
module of the Digimat® software. The ME3DP printer specifications were identified in
the first step, as per Ultimaker 3 extended® (from Ultimaker, Netherlands, with a bed
size of 215 mm × 215 mm × 300 mm and a moving platform). The thermomechanical
numerical model was selected to better approximate process-induced defects based on the
thermal variations during and after the ME3DP process. The polymeric material properties
were assigned to the imported scaffold from the Digimat-MX® database [53]. The isotropic
material properties were used for all the materials, while temperature-dependent specific
heat capacity, specific volume, and young’s modulus were used, as reported in Figure 4.
Generally, all the materials were observed to have increased specific heat capacity and
specific volume with an increase in temperature; however, young’s modulus decreased
at elevated temperatures. The thermal conductivities were 0.22 mW/(mm.◦C) for PEI,
0.18 mW/(mm.◦C) for ABS, and 0.30 mW/(mm.◦C) for PA12 material.
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In the subsequent step, the g-code file was imported to define the toolpath for ME3DP
simulation, and manufacturing parameters were identified. In addition to extrusion and
build plate temperatures, other parameters included chamber temperature (25 ◦C), bead
width (0.4 mm), and convection coefficient (0.015 mW/(mm2.◦C). A maximum element
and voxel size of 0.1 mm was chosen to comply with the layer height selected for the g-code
generation. Finally, a layer-by-layer discretization technique was adopted to reduce compu-
tation time and costs [48]. Once the job was completed, the temperature, displacement, and
residual stress fields were analyzed, and the same procedure was adopted for each case.

3. Results and Discussions

The displacement and von Mises stress fields were obtained after successfully com-
pleting the numerical simulation. The maximum displacements and von Mises (residual)
stresses for different scaffold designs and polymeric materials obtained from numerical
simulation results are reported in Table 2. The displacement and residual stress fields
exported from Digimat® are presented and discussed in the subsequent sections.

Table 2. A summary of maximum displacement and residual stresses for porous scaffolds.

No. Material Unit Cell Design Maximum
Displacement (mm) Von Mises Stress (MPa)

1
PEI

Ventils 0.1451 181.1
2 Grid 0.1168 90.5
3 Octet 0.2172 255.4

4
ABS

Ventils 0.1535 157.8
5 Grid 0.1629 76.49
6 Octet 0.2445 245.1

7
PA12

Ventils 0.2316 108.8
8 Grid 0.2437 60.24
9 Octet 0.3459 163.6

3.1. Displacement Fields

The displacement fields for different investigated scaffold designs are presented in
Figure 5. A maximum displacement of 0.1451 mm, 0.1168 mm, and 0.2172 mm was observed
for ventils, grid, and octet unit cell scaffolds in the case of PEI material. For ABS material,
a maximum displacement of 0.1535 mm, 0.1629 mm, and 0.2445 mm was recorded for
ventils, grid, and octet unit cell scaffolds, respectively. Finally, a maximum displacement of
0.2316 mm, 0.2437 mm, and 0.3459 mm was achieved for ventils, grid, and octet unit cell
scaffolds for PA12 material.
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study (a) PEI Porous Scaffold with Ventils Unit Cells (b) PEI Porous Scaffold with Grid Unit Cells
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Scaffold with Ventils Unit Cells (h) PA12 Porous Scaffold with Grid Unit Cells (i) PA12 Porous Scaffold
with Octet Unit Cells.

It is evident from displacement fields that the minimum variation from designed
scaffold structures (lower displacements) was observed for PEI material. For instance, for
ventils unit cell scaffolds, a maximum displacement of 0.1451 mm was recorded for PEI
material, following higher displacements of 0.1535 mm and 0.2316 mm for ABS and PA12
material, respectively. A similar trend was observed for grid and octet unit cell scaffolds.

Higher maximum displacements for ABS and PA12 materials are attributed to their
higher specific heat capacity and specific volume than PEI material. These two material
properties are vital in dimensional control as the extrudate goes through several heat
transfer phenomena during the extrusion, deposition, and solidification processes. From
numerical simulation results, it is concluded that higher dimensional accuracy and control
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were achieved for grid unit cell scaffolds manufactured using PEI material. Although
the observed deviations from the designed parts are relatively lower, in the case of BTE
applications, it is essential to produce the net shape per patient-specific requirements [42].

3.2. Residual Stress Fields

The residual stress fields for different investigated scaffold designs are presented
in Figure 6. A maximum von Mises stress of 181.1 MPa, 90.5 MPa, and 255.4 MPa was
observed for ventils, grid, and octet unit cell scaffolds in the case of PEI material. For
ABS material, a maximum von Mises stress of 157.8 MPa, 76.49 MPa, and 245.1 MPa was
recorded for ventils, grid, and octet unit cell scaffolds, respectively. Finally, a maximum
von Mises stress of 108.8 MPa, 60.24 MPa, and 163.6 MPa was achieved for ventils, grid,
and octet unit cell scaffolds for PA12 material.
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Scaffold with Ventils Unit Cells (h) PA12 Porous Scaffold with Grid Unit Cells (i) PA12 Porous Scaffold
with Octet Unit Cells.

It is evident from residual stress fields that the minimum residual stresses for scaffold
structures were observed for grid unit cell design fabricated using PA12 material. For
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instance, for PA12 grid unit cell scaffolds, maximum residual stress of 60.24 MPa was
recorded, followed by residual stresses of 108.8 MPa and 163.6 MPa for ventils and octet
unit cell scaffolds, respectively. A similar trend was observed for PEI and ABS materials.
Higher residual stresses for PEI are attributed to a higher young’s modulus than ABS
and PA12 materials. Higher residual stresses were observed for PEI for all the scaffold
designs, followed by ABS and PA12, consistent with the temperature-dependent material
properties. From numerical simulation results, it is concluded that minimum residual
stresses were achieved for grid unit cell scaffolds manufactured using PA12 material. The
residual stresses can play an essential role during the application phase of the designed
structures [54]; therefore, it is vital to predict and minimize these stresses for proper
functioning at the host site.

4. Conclusions

There is a pressing need to continue the pursuit of potential biomaterials and explore
the manufacturability of complex PEI scaffold structures. Therefore, in this study, the
process simulations for 3D-printed polymeric scaffolds were performed for the material ex-
trusion 3D printing (ME3DP) process to observe the manufacturing constraints and scaffold
quality with respect to designed parts. Different scaffold designs and polymeric materials
were investigated for process-induced defections and residual stresses. The numerical sim-
ulation model provides a cheaper solution to multi-dimensional optimization linked with
the ME3DP process (i.e., material properties, product design, and process parameters). The
numerical simulation results expressed that higher dimensional accuracy and control were
achieved for grid unit cell scaffolds manufactured using PEI material; however, minimum
residual stresses were achieved for grid unit cell scaffolds fabricated using PA12 material.
The numerical simulation results will be validated with experimental observations for
future studies. The current analysis was performed using different materials and scaffold
designs while process parameters were kept constant; they will be varied, and the effect
on dimensional control and 3D-printed product quality will be investigated. Furthermore,
the numerical modeling approach can be adopted before fabrication to complement sus-
tainability in terms of materials and resource utilization. The proposed methodology and
numerical model can be adopted widely for biomedical applications where patient-specific
implants are desired and manufactured on demand.
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