
Citation: Chen, J.; Mao, Z.; Huang, X.;

Deng, M. Effect of the Water-Binder

Ratio on the Autogenous Shrinkage

of C50 Mass Concrete Mixed with

MgO Expansion Agent. Materials

2023, 16, 2478. https://doi.org/

10.3390/ma16062478

Academic Editor: Alessandro

P. Fantilli

Received: 28 February 2023

Revised: 15 March 2023

Accepted: 16 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Effect of the Water-Binder Ratio on the Autogenous Shrinkage
of C50 Mass Concrete Mixed with MgO Expansion Agent
Jun Chen 1, Zhongyang Mao 1, Xiaojun Huang 1 and Min Deng 1,2,*

1 College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China;
202061103064@njtech.edu.cn (J.C.)

2 State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University,
Nanjing 211800, China

* Correspondence: dengmin@njtech.edu.cn; Tel.: +86-136-0518-4865

Abstract: The high adiabatic temperature rise and low heat dissipation rate of mass concrete will
promote rapid hydration of the cementitious material and rapid consumption of water from the
concrete pores, which may significantly accelerate the development of concrete autogenous shrinkage.
In this study, the effect of the water-binder ratio on the autogenous shrinkage of C50 concrete
mixed with MgO expansion agent (MEA) was explained with respect to mechanical properties, pore
structure, degree of hydration, and micromorphology of the concrete based on a variable temperature
curing chamber. The results show that the high temperature rise within the mass concrete accelerates
the development of early (14 d) autogenous shrinkage of the concrete, and that the smaller the water-
binder ratio, the greater the autogenous shrinkage of the concrete. With the addition of 8 wt% MEA,
the autogenous shrinkage of concrete can be effectively compensated. The larger the water-binder
ratio, the higher the degree of MgO hydration, and in terms of the compensation effect of autogenous
shrinkage, the best performance is achieved at a water-binder ratio of 0.36. This study provides a
data reference for the determination of the water-binder ratio in similar projects with MEA.

Keywords: MgO expansion agent; autogenous shrinkage; C50 mass concrete

1. Introduction

High-strength concrete is being used more widely due to the increasing demands of
modern construction [1,2]. Compared with ordinary concrete, high-strength concrete has
a lower water-binder ratio (typically ≤ 0.4) due to the addition of high-efficiency water-
reducing agents [3–5]. When the water-binder ratio of concrete is less than 0.40 [6], autogenous
shrinkage accounts for a greater proportion of the total shrinkage, which is an important
factor causing concrete cracking [7–10]. The study of autogenous shrinkage in high-strength
concrete needs more attention as it shortens the service life of concrete structures.

A great deal of research has been carried out and solutions have been proposed,
both nationally and internationally, on how to reduce the autogenous shrinkage of con-
crete [11–13]. There are currently two mainstream methods. One method is to add
lightweight aggregates [14–18], or highly absorbent polymers [19,20] and other internal
curing materials to the concrete for internal curing, in order to reduce the rate of self-drying
inside the concrete and thus reduce the autogenous shrinkage of high-strength concrete.
However, there are few practical engineering applications due to the disadvantages of
reducing the strength of concrete and the high cost. The second method is to add an
expansion agent to the concrete to compensate for the autogenous shrinkage of the concrete
through the expansion effect produced by the expansion agent. There are three main types
of concrete expansion agents commonly used in practical engineering: sulfate of alumina,
calcium oxide, and magnesium oxide [21,22]. The sulfate of alumina expansive agent
requires a large amount of water—in concrete with a low water-binder ratio, its expansion
effect cannot be fully achieved. Moreover, its hydration product, calcium alumina, is easy to
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decompose at high temperatures, and there is a risk of expansion collapsing. Calcium oxide
expansion agents’ hydration is too fast, and the effect of shrinkage compensation for aged
concrete is weak. On the contrary, magnesium oxide expansion agents have the advantages
of low water requirements, stable products, and controlled expansion rates; therefore, they
are often used to compensate for the long-term shrinkage of mass concrete [23].

Under normal temperature conditions, the use of MEA to compensate for autogenous
shrinkage of concrete has been well documented [24,25]. However, in some large volume
straight wall concrete with special applications, the poor thermal conductivity of bulk
concrete and the large amount of heat of hydration given off by the hydration of cement
can cause the temperature of the structural concrete to rise rapidly, which may significantly
accelerate the development of concrete autogenous shrinkage [26–28] and affect the use
of MEA. Therefore, the effect of temperature must be considered when using MEA to
compensate for shrinkage. The effect of maintenance temperature on the expansion of MEA
on concrete has been extensively studied [29–32]. However, MgO has a strong temperature
sensitivity [33] and the expansion effect of MEA is influenced by the internal temperature
history of bulk concrete, so the performance of MEA cannot be predicted according to a
constant temperature. Li et al. [34] investigated the synergistic effect of MEA and internal
curing materials on the shrinkage compensation of concrete under variable temperature
conditions, relying on urban railway projects. Wang et al. [35] studied the compensating
effect of a magnesium oxide expander with different activity and different dosing levels on
the shrinkage of panel concrete. Li et al. [36] demonstrated the expansion performance of a
magnesium oxide expander with different reactivity in ship lock concrete and combined it
with different temperature histories. Ou et al. [22] used a self-developed temperature stress
testing machine to study the crack mitigation properties of different reactive magnesium
oxide expansion agents in concrete under different engineering conditions. These studies
show that the compensatory effect of MEA on shrinkage varies in different projects. The
current application of MEA in engineering is mostly focused on its reactivity and the
amount of admixture, ignoring the effect of concrete mixing water on the compensatory
shrinkage performance of MEA at variable temperatures. At room temperature, the autoge-
nous shrinkage is higher with the reduction of the water-binder ratio [37,38]. Cao et al. [39]
proved that the larger the water-binder ratio, the better the compensation effect when
using MEA to compensate for concrete shrinkage at room temperature. However, based
on the temperature history of actual projects, there are still few reports on whether the
effect of temperature on the autogenous shrinkage of different water-binder ratios—or
the effect on the expansion of MEA—can have a cross-matched effect, and what kind of
water-binder ratio can achieve the best effect. This may lead to the incorrect use of MEA in
practical engineering.

This study is based on a large volume straight wall concrete project, using the same
concrete mix ratio as that of the straight wall on site (8 wt% of MEA). Through a simulation
of the site temperature history (high temperature peak and low cooling rate), the effect
of the water-binder ratio on the autogenous shrinkage of concrete with MEA under the
variable working temperature conditions was investigated, in order to provide a basis for
the selection of the water-binder ratio of concrete for engineering structures.

2. Materials and Methods
2.1. Materials

In this research, Ordinary Portland cement (OPC) was provided by Jiangnan Onoda
Cement Co., Ltd. (Nanjing, Jiangsu Province, China). Fly Ash (FA) was supplied from
Nanjing, and blast furnace slag (BFS) was provided by Mabel Ltd. (Nanjing, Jiangsu
Province, China), which were used as the supplementary cementitious materials. The
MEA was supplied by Nanjing Subote New Material Co., Ltd. (Nanjing, Jiangsu Province,
China), of which the reactivity value was 200 s. Its reactivity was estimated by the citric acid
method in accordance with Chinese standard CBMF-2017 [40]. The chemical compositions
of OPC, FA, BSF, and MEA are provided in Table 1. Distributions of particle size of these
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cementitious materials are presented in Figure 1. A polycarboxylate superplasticizer (SP),
provided by Nanjing Subote New Material Co., Ltd., was used for maintaining a consistent
slump of concrete, whose water reduction rate was 30% and solid content was 40%.

Table 1. Chemical compositions of raw materials.

Chemical
Compositions OPC FA BFS MEA

CaO (%) 65.32 4.07 38.00 1.98
SiO2 (%) 18.55 50.53 33.72 3.87

Al2O3 (%) 3.95 31.65 17.74 1.03
Fe2O3 (%) 3.41 4.48 0.77 0.88
MgO (%) 1.01 0.92 6.35 89.37
K2O (%) 0.72 1.26 0.41 0.08

Na2O (%) 0.18 0.68 0.41 -
SO3 (%) 2.78 1.32 1.04 0.06
LOI (%) 2.88 2.77 −0.72 2.38
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Figure 1. Particle size distribution of raw materials.

2.2. Mixture Proportions of Concrete

Four concrete mixtures (numbered from C1 to C4) containing 8 wt% MEA are shown in
Table 2, whose water-binder ratios range from 0.28 to 0.40. Mixtures C5–C8 were designed
as references, which were mixed without MEA in this research. In mixtures C1–C4, FA,
BFS, and MEA were used as a partial replacement for cement in order to reduce the total
hydration heat release and the temperature peak of bulk concrete, which may decrease the
high risk of concrete cracking. The amount of sand (S) and gravel (G) used is also shown in
Table 2, and the sand percentage is 38%. The quantity of MEA is determined according to
the actual project, in which the addition of MEA at 8 wt% of the total cementitious materials
restrained the cracking of concrete walls, whereas 6 wt% did not. This is also supported by
the research of Yu [41].
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Table 2. Mixture ratio of concrete (kg/m3).

Sample W/B
Mix Proportion/(kg/m3)

OPC FA BFS S G MEA SP

C1 0.28 360 90 40 680 1100 40 3.3%
C2 0.32 360 90 40 680 1100 40 2.6%
C3 0.36 360 90 40 680 1100 40 1.9%
C4 0.40 360 90 40 680 1100 40 1.6%
C5 0.28 320 90 40 680 1100 0 3.2%
C6 0.32 320 90 40 680 1100 0 2.5%
C7 0.36 320 90 40 680 1100 0 1.7%
C8 0.40 320 90 40 680 1100 0 1.4%

2.3. Methods
2.3.1. Mechanical Properties

A variable temperature curing chamber was used to simulate the history of changes
in the central temperature of straight walls in engineering. Figure 2a presents a typical
temperature history profile for large volume straight wall concrete of civil engineering,
which has a high temperature rise and low cooling rate. The central temperature of the
concrete achieves a temperature peak at around 30 h and drops to room temperature
at around 14 days. Figure 2b presents the curve of temperature change simulated in
the laboratory.
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Figure 2. Temperature curves: (a) temperature history of straight walls; (b) temperature history of
the test chamber simulation.

According to Chinese standard GB/T 50081-2019 [42], the concrete was poured into
molds whose dimensions were 150 mm × 150 mm × 150 mm. Cured in the variable
temperature oven for 24 h, concrete specimens would be removed from molds and wrapped
in plastic wrap, after which they continued to be cured. The compressive strength of
concrete was tested at 3 d, 7 d, and 28 d—and an average for each sample, at each age, was
taken from triplicate tests.

2.3.2. Autogenous Deformation

Considering that the concrete of the straight walls in the project was in a sealed
state before the early demolding, which would have exacerbated the autogenous drying
shrinkage, the autogenous deformation test was performed. The test for autogenous
shrinkage of concrete is carried out using the buried strain gauge method with reference to
SL/L 352-2020 [43]. After the concrete mixing was completed, fresh concrete was cast into
a cylindrical PVC pipe (Ø 160 mm × 400 mm) and a W-15 sine-type strain gauge, as well
as a moisture meter, was buried in the middle part of the specimen (Figure 3). Finally, the
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concrete surface was sealed with paraffin wax. The concrete mixtures loaded in PVC pipes
were cured by the variable temperature curing chamber according to the above temperature
curve, and the shrinkage was recorded every half hour over 28 days. The final setting time
of the concrete was set as the “zero time” for autogenous shrinkage [44].
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2.3.3. Thermal Analysis

At 1 d, 3 d, and 7 d, the mixtures of concrete without sand were analyzed to calculate
the hydration of magnesium oxide. After being cut into pieces, the samples were soaked in
the anhydrous ethanol for a week for the purpose of terminating their hydration. Then,
the samples were placed in a vacuum drying oven at 60 ◦C until the mass was stable.
After, those dried samples were ground into powders of no more than 0.080 µm. The
powder samples were tested using NETZSCH STA 449F1 thermogravimetry under a N2
atmosphere, heated from room temperature to 950 ◦C.

2.3.4. Pore Structure

The pore structure of concrete specimens was tested using a mercury intrusion
porosimeter (MIP). According to the sample preparation requirements, the samples main-
tained in the variable temperature oven were taken out. Concrete specimens were cut into
3~5 mm pieces and soaked in anhydrous ethanol, which was aimed at terminating the
hydration of samples. Afterward, the samples were placed in an oven at the temperature
of 60 ◦C until the mass was stable.

3. Results
3.1. Effect of Water-Binder Ratio on the Compressive Strength of Concrete with MEA

Figure 4 illustrates the compressive strength of the concrete with different water-binder
ratios at different ages. As indicated in Figure 5a, the compressive strength under variable
temperature conditions of curing was consistently over 50 MPa at 28 d, and more than 85%
of the 28 d strength could be achieved at 7 d. Similar to normal temperature curing, the
compressive strength of concrete decreases as the water-binder ratio increases. Compared
with the concrete without MEA, which is presented in Figure 4b, MEA hardly affects the
compressive strength of concrete. Before 7 d, the compressive strength of the concrete
with MEA is slightly lower than that of the concrete without MEA. However, when the
concrete is cured for 28 days, both are almost equal in compressive strength. This may
be attributed to MEA replacing part of the cement, which lessens the contribution of the
hydration products of MgO to strength [45]. In addition, MgO of MEA will compete with
cement for water in the early stage, affecting the early hydration of cement; hence, the early
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strength of concrete mixed with MEA is lower than that of concrete not mixed with MEA.
As the reaction proceeds, the slurry structure becomes denser, and the compressive strength
of MEA-doped concrete does not differ significantly from that of non-MEA-doped concrete.
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Figure 4. Compressive strength of the concrete with different water-binder ratios: (a) with MEA;
(b) without MEA.
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Materials 2023, 16, 2478 7 of 13

3.2. Autogenous Deformation and Internal Relative Humidity in Concrete

Figure 5 represents the autogenous deformation of concrete with different water-
binder ratios under variable temperatures. As demonstrated in Figure 5a, the autogenous
deformation of concrete without MEA shows a tendency toward a smaller water-binder
ratio, the larger the autogenous deformation. Concrete whose water-binder ratio is 0.28 had
the greatest autogenous deformation at 18 d, up to −218 microstrain. However, when the
water-binder ratio was 0.40, the concrete produced 38 microstrain expansion. This confirms
the direct link between autogenous deformation of concrete and internal moisture, and
it can be concluded that the water-binder ratio of 0.40 is the cut-off at which the issue of
autogenous deformation should be taken into account. After 14 d of curing, the autogenous
shrinkage tends to steady. The results of the compressive strength of the concrete show
that there is little difference between the 7 d compressive strength and the 28 d strength
of the concrete. This means that most of the hydration has been completed at 7 d under
the simulated temperature history. The self-drying caused by hydration is the main reason
for the autogenous shrinkage of the concrete, and therefore, the autogenous shrinkage of
the concrete tends to be stable after 14 d. Figure 5c shows the autogenous deformation of
concrete with different water-binder ratios after the addition of 8 wt% MEA. As shown in
Figure 5c, the autogenous deformation of concrete consistently shows expansion, especially
before 7 d, in the period when the autogenous deformation of concrete develops rapidly.
After 7 d, it reaches a stable stage of development, and within 28 d, it produces an inverse
shrinkage within 100 microstrain. The autogenous deformation of the concrete samples
with the water-binder ratios of 0.36 and 0.40 are essentially the same at 28 d, at around
600 microstrain. Compared to the concrete without MEA, that with MEA has a better
compensation effect on autogenous shrinkage when the water-binder ratio is 0.36.

Figure 5b,d show the internal humidity curves of concrete for different water-binder
ratios. As presented in the subfigures, the addition of MEA has little effect on the internal
humidity of concrete. However, it is worth noting that the internal humidity of concrete
decreases significantly during 1–7 d, which corresponds to the rapid development of
early autogenous shrinkage of concrete. After being cured for 14 d, the humidity slowly
decreases, which also explains why the autogenous shrinkage of concrete remains near
stable after 14 d. The variation in the internal humidity of the concrete essentially matches
the variation of the curing temperature, with high temperatures accelerating the depletion
of moisture within the concrete and the development of autogenous deformation.

3.3. Thermal Analysis

Figure 6 shows the TG and DSC profiles of the concrete specimens with different
water-binder ratios. As shown in Figure 6b,d,f, there is an obvious endothermic peak that
appears at 320–400 ◦C, which corresponds to the decomposition of Mg(OH)2. Based on
Mo [46], the quantity of Mg(OH)2 and the hydration degree of MgO can be calculated by
Equations (1) and (2):

QMg(OH)2
=

58 × Mass loss(320 °C−400 °C)

18
(1)

HMgO =
40 × Mass loss(320 °C−400 °C)

n × 18 ×
[
1 − Mass loss(950 °C)

] (2)

Table 3 provides the amount of Mg(OH)2 and the hydration degree of MgO in the
samples. It is clear that there is a rapid increase in the hydration degree of MgO during
the first 3 d. The water-binder ratios (0.28, 0.32, 0.36, 0.40) are 53.1%, 52.3%, 55.2%, and
67.4%, respectively, which are highly dependent on the curing temperature at which the
specimens are maintained, once again confirming the temperature sensitivity of the MEA
and that high temperatures accelerate the hydration of MgO. The hydration degrees of
MgO in concrete with different water-binder ratios are relatively close at 3 d, which is
probably attributable to the fact that there is sufficient water inside the concrete in the early
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stages and MgO competes with cement for water. When at 7 d, there is a notable difference
between different water-binder ratios. The hydration degrees of MgO in the concrete with
the water-binder ratios of 0.40, 0.36, and 0.40 are 72.6%, 66.9%, and 62.8%, respectively,
whereas the hydration degree is only 58.9% when the water-binder ratio is 0.28. Combined
with the changes of humidity in Figure 5, the reduction in moisture in the concrete impedes
the hydration of MgO. The lower the water-binder ratio, the less free water is available for
MgO, or the lower the rate. It is obvious that internal moisture becomes critical in the later
stages of curing.

Materials 2023, 16, x FOR PEER REVIEW 8 of 13 
 

 

3.3. Thermal Analysis 

Figure 6 shows the TG and DSC profiles of the concrete specimens with different 

water-binder ratios. As shown in Figure 6b,d,f, there is an obvious endothermic peak that 

appears at 320–400 °C, which corresponds to the decomposition of Mg(OH)2. Based on Mo 

[46], the quantity of Mg(OH)2 and the hydration degree of MgO can be calculated by 

Equations (1) and (2): 

QMg(OH)2
=

58 × Mass loss(320 ℃−400 ℃)

18
 (1) 

HMgO =
40 × Mass loss(320 ℃−400 ℃)

n × 18 × [1 − Mass loss(950 ℃)]
 (2) 

 

 

Figure 6. TG/DSC curves of the concrete containing MEA with different water-binder ratios :(a) TG 

curves at the ages of 1 d; (b) DSC curves at the ages of 1 d; (c) TG curves at the ages of 3 d; (d) DSC 

curves at the ages of 3 d; (e) TG curves at the ages of 7 d; (f) DSC curves at the ages of 7 d. 

0 200 400 600 800 1000

84

88

92

96

100

0 200 400 600 800 1000

-1.2

-0.8

-0.4

0.0

W
ei

g
h

t 
lo

ss
/%

Temperature/℃

 TG-0.28-1d

 TG-0.32-1d

 TG-0.36-1d

 TG-0.40-1d

(a) (b)

D
S

C
/(

m
W

/m
g
)

Temperature/℃

 DSC-0.28-1d

 DSC-0.32-1d

 DSC-0.36-1d

 DSC-0.40-1d

0 200 400 600 800 1000

80

85

90

95

100

0 200 400 600 800 1000

-0.8

-0.6

-0.4

-0.2

0.0

M
a
ss

 l
o
ss

/%

Temperature/℃

 TG-0.28-3d

 TG-0.32-3d

 TG-0.36-3d

 TG-0.40-3d

(c) (d)

D
S

C
/(

m
W

/m
g
)

Temperature/℃

 DSC-0.28-3d

 DSC-0.32-3d

 DSC-0.36-3d

 DSC-0.40-3d

0 200 400 600 800 1000

80

85

90

95

100

0 200 400 600 800 1000

-1.2

-0.8

-0.4

0.0

M
a

ss
 l

o
ss

/%

Temperature/℃

 TG-0.28-7d

 TG-0.32-7d

 TG-0.36-7d

 TG-0.40-7d

(e) (f )

D
S

C
/(

m
W

/m
g

)

Temperature/℃

 DSC-0.28-7d

 DSC-0.32-7d

 DSC-0.36-7d

 DSC-0.40-7d

Figure 6. TG/DSC curves of the concrete containing MEA with different water-binder ratios: (a) TG
curves at the ages of 1 d; (b) DSC curves at the ages of 1 d; (c) TG curves at the ages of 3 d; (d) DSC
curves at the ages of 3 d; (e) TG curves at the ages of 7 d; (f) DSC curves at the ages of 7 d.
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Table 3. Quantity of Mg(OH)2 and hydration degree of MgO in concrete pastes containing MEA.

0.28 + 8% MEA 0.32 + 8% MEA 0.36 + 8% MEA 0.40 + 8% MEA

1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d 1 d 3 d 7 d

Mass loss at 320–400 ◦C/wt% 2.1 2.8 3.1 2.2 2.9 3.2 2.2 3.2 3.3 2.2 3.6 3.4
Quantity of Mg(OH)2/% 6.8 9.3 10.0 7.2 9.5 10.4 8.2 10.5 10.7 7.2 11.7 11.1

Hydration degree of MgO/% 39.2 53.1 58.9 40.5 52.3 65.8 42.7 55.2 66.9 51.7 67.4 72.6

3.4. Pore Structure and Microstructure

Figure 7 shows the pore structures of concrete specimens mixed with MEA (8 wt%) and
different water-binder ratios at 3 d. As illustrated in Figure 7a, the pore size of the samples
added with MEA is mostly distributed in the range of 7~70 nm. As the water-binder ratio
increases, the peak of the pore size moves to the right and the pore size < 50 nm increases,
probably due to the higher hydration degree of the silicate cement and the formation of
more gel pores. Figure 7b indicates that the cumulative porosity of the specimens is also
increased. Figure 8 shows the relative pore volume distribution of MgO concrete with
various water-binder ratios. It is obvious that the larger the water-binder ratio, the fewer
pores there are above >50 nm. The increase in water contributes to the migration of Mg+,
which allows more Mg(OH)2 products to grow inside the pores, thus changing the pore
size distribution inside the pastes and refining the pore size.
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Figure 9 presents the microscopic morphology of the specimens with the water-binder
ratios of 0.32 and 0.36. As illustrated in Figure 9b, under high temperature maintenance,
the Mg(OH)2 crystals are mainly in the form of flakes of different sizes, which grow near
the MgO particles. Ca2+ has an inhibitory effect on the diffusion of Mg2+ and promotes the
growth of Mg(OH)2; therefore, Mg(OH)2 crystals generally grow near Ca(OH)2 crystals.
The lamellar Mg (OH)2 crystals in Figure 9d are denser and fill in the pores, which explains
the smaller pore size of the specimen with a water-binder ratio of 0.36 compared to that
with a ratio of 0.28.
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(b) w/c = 0.32, ×10,000; (c) w/c = 0.36, ×5000; (d) w/c = 0.36, ×10,000.

4. Discussion

Bulk high-strength concrete generally has a high adiabatic temperature rise due to the
great amount of cementitious material and the slow dissipation of heat from the concrete.
In large volume straight wall concrete projects, temperatures in the center of the concrete
can reach over 70 ◦C (and even 80 ◦C) and do not drop to room temperature until 14 d.
The high temperature changes within the bulk straight wall concrete not only accelerate
the development of autogenous concrete deformation but also promote the hydration of
MgO. Although the addition of MEA mitigates the autogenous shrinkage of the concrete,
the effect of different water-binder ratios on the deformation of concrete under variable
temperature conditions varies slightly. Compared to concrete with a water-binder ratio
of 0.28, an increased water-binder ratio not only reduces the autogenous shrinkage of the
concrete itself but also contributes more to the hydration of MgO and the production of
more Mg (OH)2. The thermal analysis shows that there is little difference in the degree of
hydration of MgO in concrete with different water-binder ratios at 3 d. However, at 7 d, the
hydration degree of MgO in concrete with a water-binder ratio of 0.40 is 72.6% compared to
58.9% with a water-binder ratio of 0.28. Sufficient water is supplied to MgO to produce Mg
(OH)2, which counteracts the pore pressure and is the key to compensating the autogenous
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shrinkage of concrete. Meanwhile, Ca2+ has an inhibitory effect on the diffusion of Mg2+,
which promotes the nucleation and growth of Mg (OH)2. Thus, Mg (OH)2 crystals mostly
grow overlappingly in pores not far from the MgO particles. Moreover, the higher the water-
binder ratio, the denser the hydration product of MgO. The early arrival of the hydration
period of MgO allows the crystalline growth pressure of the Mg (OH)2 crystals to resist
the early shrinkage deformation of the concrete. However, the autogenous deformation of
mass concrete in practical projects is more complex, as the restraint of reinforcement, the
large temperature difference between day and night, and the method of construction all
affect the autogenous shrinkage of concrete. Increasing or changing the water-binder ratio
alone will not completely overcome the problem of autogenous deformation of concrete
and needs to be carried out in cooperation with other effective measures according to the
actual situation of the project at the time. This study was carried out based on a large
volume of straight wall concrete and is intended to provide a reference for similar projects
with MEA.

5. Conclusions

The internal temperature variations of C50 bulk straight wall concrete structures
in practical projects were simulated in the laboratory. On this basis, the influence of
different water-binder ratios on the compressive strength, autogenous shrinkage, pore
size, and micromorphology of concrete with MEA was studied. The key conclusions are
the following:

1. The hydration process of MgO is accelerated under variable temperature curing. The
addition of 8 wt% MEA reduces the compressive strength of the concrete, but the
effect is minimal (no more than 5 MPa). In this experiment, the compressive strength
of the concrete at 7 d can reach 85% or more at 28 d.

2. High temperature accelerates the early self-shrinkage of concrete, especially within
7 d. Increasing the water-binder ratio can reduce the autogenous shrinkage of concrete.
When the water-binder ratio is 0.40, the concrete deformation is slightly expanded.
Compared to the reference group without MEA, the best effect of compensating for
autogenous shrinkage is achieved by adding 8% MEA with a water-binder ratio of
0.36. Therefore, in actual projects, the water-binder ratio can be relaxed to 0.36 or even
0.40 under the premise of ensuring strength.

3. At high temperatures, the hydration product of MgO, Mg(OH)2 crystals, appear as
lamellar in the cement system, growing mainly in the pores not far from the MgO
particles and overlapping each other. As the water-binder ratio increases, the MgO
hydrates more and the Mg(OH)2 crystals become denser, which fills the pores better
and counteracts the autogenous shrinkage of the concrete.
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16. Polat, R.; Demirboğa, R.; Khushefati, W.H. Effects of nano and micro size of CaO and MgO, nano-clay and expanded perlite

aggregate on the autogenous shrinkage of mortar. Constr. Build Mater. 2015, 81, 268–275. [CrossRef]
17. Yang, L.; Ma, X.; Liu, J.; Hu, X.; Wu, Z.; Shi, C. Improving the effectiveness of internal curing through engineering the pore

structure of lightweight aggregates. Cem. Concr. Comp. 2022, 134, 104773. [CrossRef]
18. Xu, F.; Lin, X.; Zhou, A. Performance of internal curing materials in high-performance concrete: A review. Constr. Build Mater.

2021, 311, 125250. [CrossRef]
19. Shen, D.; Wang, X.; Cheng, D.; Zhang, J.; Jiang, G. Effect of internal curing with super absorbent polymers on autogenous

shrinkage of concrete at early age. Constr. Build Mater. 2016, 106, 512–522. [CrossRef]
20. Wyrzykowski, M.; Lura, P.; Pesavento, F.; Gawin, D. Modeling of Water Migration during Internal Curing with Superabsorbent

Polymers. J. Mater. Civ. Eng. 2012, 24, 1006–1016. [CrossRef]
21. Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr.

Res. 2014, 57, 1–12. [CrossRef]
22. Ou, G.; Lin, Z.; Kishi, T. The practical application of a self-developed temperature stress testing machine in development of

expansive concrete blended with calcium sulfoaluminate additives. Cem. Concr. Res. 2023, 164, 107045. [CrossRef]
23. Ou, G.; Kishi, T.; Mo, L.; Lin, Z. New insights into restrained stress and deformation mechanisms of concretes blended with

calcium sulfoaluminate and MgO expansive additives using multi-scale techniques. Constr. Build Mater. 2023, 371, 130737.
[CrossRef]

24. Chen, X.; Yang, H.; Li, W. Factors analysis on autogenous volume deformation of MgO concrete and early thermal cracking
evaluation. Constr. Build Mater. 2016, 118, 276–285. [CrossRef]
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