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Abstract: Nanocomposite films based on macrocyclic compounds (zinc phthalocyanine (ZnPc) and
5,10,15,20-tetra(4-pyridyl) 21H,23H-porphyrin (TPyP)) and metal oxide nanoparticles (ZnO or CuO)
were deposited by matrix-assisted pulsed laser evaporation (MAPLE). 1,4-dioxane was used as a
solvent in the preparation of MAPLE targets that favor the deposition of films with a low roughness,
which is a key feature for their integration in structures for optoelectronic applications. The influence
of the addition of ZnO nanoparticles (~20 nm in size) or CuO nanoparticles (~5 nm in size) in the
ZnPc:TPyP mixture and the impact of the added metal oxide amount on the properties of the obtained
composite films were evaluated in comparison to a reference layer based only on an organic blend.
Thus, in the case of nanocomposite films, the vibrational fingerprints of both organic compounds
were identified in the infrared spectra, their specific strong absorption bands were observed in the
UV–Vis spectra, and a quenching of the TPyP emission band was visible in the photoluminescence
spectra. The morphological analysis evidenced agglomerated particles on the composite film surface,
but their presence has no significant impact on the roughness of the MAPLE deposited layers. The
current density–voltage (J-V) characteristics of the structures based on the nanocomposite films
deposited by MAPLE revealed the critical role played by the layer composition and component ratio,
an improvement in the electrical parameters values being achieved only for the films with a certain
type and optimum amount of metal oxide nanoparticles.

Keywords: MAPLE; nanocomposite films; metal oxide nanoparticles; BHJ; optoelectronic applications

1. Introduction

The research interest on nanocomposites materials has increased dramatically over the
years, taking into account the fact that they can be used as functional nanomaterials that are
easily integrated into different areas, such as optoelectronics, environmental applications,
medicine, etc. [1–4]. Organic–inorganic composites have attracted special attention due to
the possibility of fabricating nanomaterials with enhanced properties by combining the
features of constituent components [2,5,6].

Lately, a hot research topic has consisted of designing and developing organic–
inorganic nanocomposites as thin films with tailored properties, owing to their wide
range of applications in fields such as optoelectronics, sensing, medicine, surfaces with
controlled wettability, etc. [1,4,6–8]. Among the organics, highly conjugated heteroaromatic
macrocyclic compounds such as porphyrins and their synthetic analogues (phthalocya-
nines) have shown remarkable properties, such as intense absorption in the visible domain,
structural flexibility, and compatibility with plastic substrates [9–11]. These organic ma-
terials are of interest in different application areas: optoelectronics (non-linear optical
materials [12], photovoltaic cells [13], and organic light-emitting diodes [14]) and medicine
(photodynamic therapy [15,16]). Moreover, metal phthalocyanines are cheap, nontoxic,
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and stable (chemically and thermally) semiconductors that can be used in various de-
vices [3,7,11,17]. The inorganic nanostructures to be embedded into an organic matrix
in order to obtain nanocomposite thin films must feature an adequate morphology and
size [18]. From inorganics, zinc oxide (ZnO) and copper oxide (CuO) can be easily obtained
(in large quantities) as nanostructures with a controlled morphology and size by various
wet and dry approaches that involve raw readily available materials and inexpensive
equipment [18–22]. The fabricated metal oxide nanostructures are used in electronics, food
packaging applications, or water treatment [18,20,23,24].

Organic–inorganic systems based on phthalocyanine (or porphyrin derivatives) and in-
organic semiconductors were investigated for their suitability in photovoltaic cells [25–27],
chemical gas sensors [7,28,29], photocatalysis [3], the biomedical field [30], etc. Although
different wet preparation methods (sol–gel [31], Langmuir–Blodgett [32], cathodic electrode-
position [25], etc.) were used for preparing such hybrid films with suitable properties for a
target application, spin-coating remains the most accessible technique for the deposition of
nanocomposite films [7,33,34]. However, spin-coating requires a highly concentrated solu-
tion (of which even 95% is lost during the deposition process) and substrates characterized
by a certain wettability and size make this method inaccessible in some conditions [7,35,36].
Moreover, the properties (such as the boiling point, vapor pressure, and evaporation rate) of
the solvent implied in the fabrication of the mixed layers have a great impact on their mor-
phology and roughness [37]. Thus, films deposited by spin-coating from blend solutions
containing solvents with a high vapor pressure display an increased surface roughness be-
cause the evaporation occurs faster [38], whereas films deposited from slowly evaporating
solvents feature a smooth surface [39].

Matrix-assisted pulsed laser evaporation (MAPLE) is a laser-processing technique
initially developed to deposit soft materials (especially biomaterials), which is currently
extended to the fabrication of composite layers [18,40,41]. Thus, various types of substrates
with different wettability were covered by MAPLE from solutions with a low concentration
of material (frequently 1–5% mass concentration) [41–43]. Several deposition parameters
can be tuned in order to obtain films with suitable properties, the most important being:
(i) the solvent involved in the preparation of the solution that is further frozen to fabricate
the MAPLE target and (ii) the laser fluence used during the deposition process [44,45].
The selection of the solvent must be made in correlation with its properties and the laser
wavelength, meaning that the solvent must completely dissolve the organic compound and
absorb the laser energy [44]. Hence, many solvents, such as dimethyl sulfoxide (DMSO),
chloroform, toluene, o-xylene, pseudocumene, chlorobenzene, 1,2-dichlorobenzene, 1,2,4-
trichlorobenzene, or tetrahydrofuran, were used in the MAPLE deposition for obtaining
films characterized by a suitable morphology, which were further integrated into opto-
electronic devices [44,46–51]. Thus, poly [2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene
vinylene] (MEH-PPV), a luminescent polymer used frequently in organic light-emitting
diodes (OLEDs), was deposited from toluene or tetrahydrofuran by MAPLE [49]. Poly
3-hexylthiophene (P3HT) is another polymer suitable for organic photovoltaics that was
deposited by MAPLE from o-xylene [50]. In addition, polymeric films based on regio-
regular poly [3-(4-octyloxyphenyl) thiophene] (POOPT) were fabricated by MAPLE from
chloroform [51]. These studies emphasized that the obtained MAPLE films preserved the
chemical structure and the optical properties of the organic raw materials, their morphology
being influenced by the substrate temperature.

In the MAPLE process, similar to the behavior noted in the spin-coating related to the
vapor pressure parameter, smooth films are deposited when low-vapor-pressure solvents
are used [44]. It has to be mentioned that, even if the surface of the films prepared from
a low-pressure solvent (e.g., DMSO) is smoother than that of the films prepared from
high-pressure solvents (e.g., chloroform), the MAPLE films can contain solvent traces due
to the formation of solvent droplets at the laser–target interaction [52].

In this context, the present study was focused on the MAPLE deposition and charac-
terization of nanocomposite layers based on macrocyclic compounds (zinc phthalocyanine
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(ZnPc) and 5,10,15,20-tetra(4-pyridyl)21H,23H-porphyrin (TPyP)) with different types of
conduction (ZnPc-p and TPyP-n) and metal oxide nanoparticles (ZnO or CuO) also with
different types of conduction (ZnO-n and CuO-p). ZnPc is a well-known metal phthalocya-
nine characterized by high absorption properties, and is more soluble in different solvents
than other similar phthalocyanine compounds (e.g., copper phthalocyanine) [53]. TPyP
is a porphyrin that presents absorption in the visible part of the solar spectrum and can
be easily obtained in thin-film form [54]. 1,4-dioxane is involved as a solvent (for the first
time) in the preparation of MAPLE targets, this compound being a good solvent for ZnPc
and showing good absorption at the laser wavelength (248 nm) used during the MAPLE
process [53,55]. Although, 1,4-dioxane was recently utilized as a solvent in the deposition
of polycaprolactone through a material jetting technique for biomedical applications [56]
and as a co-solvent (together with methanol) in the deposition of perovskite films by spin-
coating for photovoltaic cell applications [57], to our knowledge, there is no report on using
1,4-dioxane as a solvent in the MAPLE deposition.

2. Experimental Section

The organic compounds ZnPc, TPyP, and 1,4-dioxane were purchased from Sigma
Aldrich and used as received. The chemical reagents Zn(CH3COO)2, Cu(CH3COO)2,
NaOH, and ethanol were purchased from Merck and used without further purification.
Metal oxide nanoparticles were synthesized by modifying the precipitation procedures
described in the references [58,59]. Thus, under vigorous stirring, an aqueous solution
of 0.25 M NaOH was added in an aqueous solution of 0.1 M Zn(CH3COO)2 for ZnO
while an ethanol solution of 0.036 M NaOH was added in an ethanol solution of 0.018 M
Cu(CH3COO)2 for CuO. After 1 h at 70 ◦C, the white (ZnO) and black (CuO) precipitates
were collected by centrifugation, washed with distilled water, and dried at room temper-
ature. The morphological, structural, and optical properties of the prepared metal oxide
nanoparticles were investigated using a Zeiss Merlin Compact field emission scanning
electron microscope, a Bruker D8 Advance set-up (in a Bragg-Bretano geometry) with Cu
Kα1 (λ = 1.4506 Å) monochromatized radiation, and a Perkin Elmer Lambda 45 UV-Vis
spectrophotometer equipped with an integrating sphere.

In the next step, a laser with excimer (KrF*, Coherent, CompexPro 205, λ = 248 nm,
τFWHM ~25 ns) and 1,4-dioxane were involved in the MAPLE deposition of the organic
and composite films. The reference layer based only on the organic compounds (ZnPc:TPyP,
in 1:1.5 ratio) was prepared from a solution with 3% weight/volume concentration in
1,4-dioxane. In the case of composite layers, the inorganic nanoparticles (ZnO or CuO)
were dispersed in the organic solution mixture (ZnPc:TPyP), keeping the concentration (3%
weight/volume) in 1,4-dioxane constant. Practically, 15% or 25% of the amount of TPyP
was replaced by an amount of ZnO nanoparticles in order to prepare the P1 and P2 samples,
while the same percentage (15% or 25%) of ZnPc was replaced by an amount of CuO
nanoparticles for obtaining P3 and P4 samples. Thus, depending on the component weight
ratio in the MAPLE deposited layers (ZnPc:TPyP:ZnO:CuO), the investigated samples were
labelled as follows: P0 (1:1.5:0:0), P1 (1:1.275:0.225:0), P2 (1:1.125:0.375:0), P3 (0.85:1.5:0:0.15),
and P4 (0.75:1.5:0:0.25). The same experimental parameters were employed in all MAPLE
deposition: 300 mJ/cm2 laser fluence, 70 000 number laser pulses, 20 Hz repetition rate,
and 5 cm target–substrate distance. In the same deposition cycle, the organic and com-
posite layers were deposited on glass and silicon substrates for structural, morphological,
and optical measurements and on indium tin oxide (ITO) covered with a thin layer of
poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS, 40 nm) substrates
for evaluating the potential application of the developed structures in the optoelectronic
domain. More details about the MAPLE process and the deposition of PEDOT:PSS film on
ITO/glass substrates by spin-coating are provided in the reference [46].

Further, the organic and nanocomposite layers deposited by MAPLE were assessed
from morphological, vibrational, optical, and electrical point of view. The thickness was
estimated as an average media of three scans in different points by an Ambios Technology
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XP 100 profilometer. The morphology and the elemental composition were evaluated using
a Zeiss Gemini SEM 500 field emission scanning electron microscope equipped with an
energy-dispersive X-ray analysis Quantax Bruker XFlash detector 610 M accessory and a
Nanonics 4000 Multiview atomic force microscope. The infrared spectra were collected
in the 700–1700 cm−1 domain with an IRTracer-100 spectrometer, the UV–Vis spectra in
the 250–850 nm range by a Thermo Scientific Evolution 220 Spectrophotometer, and the
photoluminescence (PL) spectra in the 450–750 nm domain (λexc = 435 nm) using an FL
920 Edinburgh Instruments spectrometer with a 450 W Xe lamp excitation and double
monochromators on both excitation and emission.

In order to perform the electrical measurements, on top of the organic or composite
layers deposited on ITO/PEDOT:PSS, lithium fluoride (LiF, 1.5 nm) and aluminium (Al,
~100 nm) films were deposited through shadow masks by vacuum thermal evaporation
using a Tecuum AG, VCM600-V3-80 set-up. The role of the LiF film is to improve the
electron injection. The substrates were kept at room temperature and the pressure in
the deposition chamber was 1.6 × 10−6 mbar. Hence, the electrical and photo-electrical
behavior of the fabricated structures were investigated from current density–voltage (J-V)
measurements carried out in dark and under illumination (AM 1.5, incident power density
equal to 100 mW/cm2), all tests being performed in air. The experimental set-up was
formed by a Keithley SourceMeter 2400 model, a Newport Oriel monochromator, and a
Newport Oriel solar simulator controlled by a computer, the working interface being a
homemade one based on LabVIEW 7.1 software (National Instruments, Austin, TX, USA).

3. Results and Discussion

The morphological, structural, and optical properties of the chemically synthesized
inorganic powders were firstly evaluated. The FESEM images (Figure 1) disclose that
ZnO (Figure 1a,b) and CuO (Figure 1d,e) powders are formed by quasi-monodispersed
particles with sizes of ~20 nm and ~5 nm, respectively. Further, the particle size distribution
histograms of the metal oxide nanoparticles were obtained using the ImageJ 1.53t software,
these disclosing a relatively homogeneous size distribution.

The XRD patterns (Figure 2a,c) reveal the main peaks corresponding to the Miller in-
dexes of the reflecting planes assigned to the hexagonal wurtzite ZnO structure (Figure 2a),
ICDD 00-035-1451, and monoclinic CuO structure (Figure 2c), ICDD 00-048-1548. The
mean crystallite size (D) of the metal oxide samples was estimated at ~17 nm for ZnO and
~2 nm for CuO using the Debye–Scherrer equation D = Kλ/βcosθ, where K = 0.9 (shape
factor), λ = 0.154 nm (wavelength of the incident CuKα radiation), θ = the Bragg angle, and
β = FWHM (full width at half maximum of the most intense diffraction peaks). In the opti-
cal reflectance spectra (Figure 2b,d), a strong decrease can be observed below ~400 nm and
~900 nm due to the band-to-band transition in ZnO and CuO, respectively, the band gap
value being estimated at around 3.32 eV for ZnO and 1.42 for CuO by plotting [F(R)*E]2 ver-
sus photon energy (E), where F(R) is the Kubelka–Munk function, with F(R) = (1 − R)2/2R,
and R is the observed diffuse reflectance (insets Figure 2b,d). Both band gap values are in
agreement with those previously reported for these two semiconductors [21,60,61].

These results confirm that the prepared metal oxide nanoparticles have adequate
properties for their embedding in organic–inorganic nanocomposite films with a thickness
of ~100 nm.

Subsequently, the organic and composite films deposited by MAPLE were assessed
by infrared spectroscopy in order to analyze the preservation or damage of the chemical
structure of the organic components during the MAPLE process. FTIR measurements
were carried out both on MAPLE deposited films and on films obtained by drop-casting
from the solution containing only the organic compounds (the same solution used in the
preparation of the target involved in the deposition of the P0 sample by MAPLE). In this
way, an accurate evaluation can be achieved, taking into account that the specific vibration
bands of each organic component can be more easily identified in the FTIR spectra of the
thicker film deposited by drop-casting (Figure 3a) than in the FTIR spectra of the MAPLE
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deposited films (Figure 3b). The phthalocyanines are synthetic analogues of porphyrin [9];
hence, absorption bands observed at approximately 727 cm−1 (C-H bond out-of-plane
deformation), 1406 cm−1 (isoindole stretch), and 1594 cm−1 (stretching of the C=C bond in
benzene from ZnPc or in pyridyl from TPyP [54,62]) can be assigned to both organic com-
pounds. Specific phthalocyanine vibration bands are observed at approximately 750 cm−1

(C-H bond in-plane deformation), 781 cm−1 and 883 cm−1 (benzene breathing), 1060 cm−1,
1085 cm−1, 1119 cm−1, 1163 cm−1, 1285 cm−1 (C-H bond bending), 1333 cm−1 (in-plane
stretch of pyrrole), 1456 cm−1 and 1483 cm−1 (isoindole stretch), and 1610 cm−1 (C=C
bond stretch in benzene) [62]). Specific TPyP vibration bands are noted at approximately
800 cm−1 (C-H bond vibration in pyrrole), 971 cm−1 and 1003 cm−1 (vibration of the C-N
bond and relaxation of the porphyritic ring, both specific to the porphyrin base), and
1352 cm−1 (stretching of the C=N bond), respectively [63].
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Although, in the FTIR spectra of the films deposited by MAPLE, the absorption
bands of ZnPc and TPyP are less intense due to the film thickness ranging from 60 nm to
105 nm, their presence confirms that the chemical structures of both organic components
are preserved during the MAPLE deposition.
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Usually, the morphology and the thickness of the layers involved in the fabrication of
devices have a major impact on their performance. FESEM images (Figure 4), EDX maps
(Figure 5), and AFM images (Figure 6) of the MAPLE deposited films reveal that these are
uniform and continuous with some aggregates on their surface, with a morphology specific
to the MAPLE films [63].
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The FESEM images (Figure 4) disclose that the aggregates are randomly distributed
on the layer surface. As expected, the presence of the metal oxide nanoparticles increases
the size and number of the aggregates, which tend to form clusters, a similar effect also
being observed in the case of films deposited by spin-coating [64]. Moreover, the FESEM
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images (Figure 4) revealed that the P1 and P2 samples present larger clusters than P3 and
P4 samples due to the presence of ZnO nanoparticles, which have larger sizes than those of
CuO nanoparticles (Figure 1). Thus, the globular morphology characteristic to the MAPLE
deposition [42,46] together with the particularities linked to the metal oxide nanoparticle
size and components ratio result in films with surfaces containing aggregates that have a
clusterization tendency. The presence of the metal oxide nanoparticles in the composite
films deposited by MAPLE is proved by the EDX spectra (Figure 4 insets), the signals
corresponding to C, N, O, Zn, and Cu (elements contained by both organic and inorganic
components) being identified. For all EDX spectra, the most intense peak is assigned to the
Si signal, silicon substrates being used in the deposition process. In the composite films,
the increase in the amount of ZnO or CuO leads to an increase in the Zn or Cu atomic
percentage in P1–P2 and P3–P4, respectively. The difference noted in the Zn signal can be
explained by taking into consideration the following aspects: the ZnPc amount is the same
in the P0–P2 samples and is lower in the P3–P4 samples (due to the addition of CuO instead
of ZnO), so the Zn atomic percentage increases from the P0 film (based only on ZnPc:TPyP)
to the P1 film and further to the P2 film due to the addition of ZnO, and decreases from the
P3 film to the P4 film due to the increase in the added CuO amount in these samples.

Further, the distribution of the metal oxide nanoparticles in the composite films was
assessed. Taking into account that the presence of Zn peak can be related to both ZnPc and
ZnO, and is not relevant for the presence of only ZnO nanoparticles, the FESEM image
(Figure 5a) and the corresponding EDX map (Figure 5b) are given for the P4 film, this
sample containing the highest amount of CuO nanoparticles.

Hence, the EDX map illustrates a uniform distribution of the Cu element on the entire
surface of the composite layer, confirming that the metal oxide powder was well dispersed
in the organic mixture during the preparation of the target and was further uniformly
transferred in the composite layer.

The influence of the addition of inorganic nanoparticles in the organic mixture on
the surface and thickness of the MAPLE deposited layers was further explored. Thus, the
roughness parameters (root mean square (RMS), roughness average (Ra)) were evaluated
based on the AFM images (Figure 6), their values and the layer thickness being summarized
in Table 1.

Table 1. The component ratio, thickness, and roughness parameters of the MAPLE deposited films.

Sample Component Ratio
ZnPc:TPyP:ZnO:CuO

Thickness
(nm) RMS (nm) Ra (nm)

P0 1:1.5:0:0 105 5.3 3.9

P1 1:1.275:0.225:0 60 8.3 5.3

P2 1:1.125:0.375:0 95 6.5 4.4

P3 0.85:1.5:0:0.15 95 8.8 6.2

P4 0.75:1.5:0:0.25 90 8.6 5.6

It can be noted that the thickness of the composite layers decreases in comparison to
that of the reference organic film. As already mentioned, in the case of composite layers,
the inorganic nanoparticles were dispersed in the organic solution mixture, keeping the
concentration in the solvent constant so that the organic content is reduced in these samples
due to the addition of the inorganic nanoparticles. Usually, the insertion of metal oxide
nanoparticles within the organic active layer leads to an increase in the thickness of the
hybrid layer [65]. In the present case, a possible explanation for the thickness decrease
takes into account the presence of TPyP in the organic mixture (ZnPc:TPyP). Compared to
the planar molecule of ZnPc, TPyP is a mesosubstituted porphyrin in which the pyridyl
groups can be rotated out of the porphyrin plane, a conformational adaptation effect on
the deposition substrate of this molecule being reported [66]. In addition, the porphyrin
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compounds can be adsorbed on the surface of metal oxide nanoparticles, modifying their
orientation on the substrate surface and affecting the molecular packing [67].

Concerning the roughness parameter, the RMS value obtained for the P0 sample is
very small in comparison to those of the organic films based on the same small molecule
compounds deposited by MAPLE in very similar conditions using DMSO [63]. 1,4-dioxane,
the solvent used in this study, features a high vapor pressure (3.7 kPa at 20 ◦C [57]). After
the arrival and deposition on the substrate, the solvent rapidly evaporates, leading to
the supersaturation of the precursor mixture and formation of a large number of nuclei,
resulting in smoother and homogeneous films than those prepared from conventional
solvents such as dimethylformamide or DMSO.

A low roughness is still noted for the composite layers, even if the RMS parameters
are slightly increased. Interestingly, although the P2 sample contains the highest ZnO
amount, a variation of 1.2 nm is obtained between its roughness and that of the P0 sample
based only on organic components. In the case of this sample, the thickness of the layer
and the roughness parameter value suggest that the presence of the ZnO nanoparticles
does not have a major impact on these parameters, these being well distributed within
the composite film. In addition, the roughness values of the samples containing CuO
nanoparticles are similar to those recorded for the layers based on ZnO nanoparticles.
Although the roughness values of the composite layers are slightly increased in comparison
to that of the reference organic layer, they are still smaller than the values reported for the
hybrid layers based on organic compounds and metal oxide nanoparticles fabricated by
spin-coating [64,68]. In addition, the roughness of the composite films prepared by MAPLE
is smaller than the roughness recorded for the hybrid films based on poly [2,6-(4,4-bis-
(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b0]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]
(PCPDTBT) and CdSe nanoparticles deposited by another laser technique, resonant infrared
MAPLE (RIR-MAPLE) [47], which is usually regarded as an alternative to MAPLE for
fabricating smoother films.

The optical properties of the MAPLE deposited films were evaluated from the UV–Vis
spectra (Figure 7a) and PL spectra (Figure 7b). Both organic materials are characterized by
absorption bands in the visible part of the solar spectrum, the shape of the UV–Vis spectra
being almost the same for all investigated samples. Hence, the absorption bands assigned
to ZnPc are identified as follows: a Soret (B) band at a lower wavelength between 310 nm
and 390 nm, with the maximum at ~340 nm, and a Q band with its specific splitting in two
maxima at 630 nm (π-π∗ transition [69]) and 690 nm (excitonic transition [70]).
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Macrocyclic compounds with a highly conjugated π-electron system as the phthalocya-
nines, the porphyrine compounds such as TPyP present also the B and several Q bands [54,71].



Materials 2023, 16, 2480 11 of 17

Thus, in the P0 sample, the TPyP signature consists of: an intense narrow B band with a
maximum at ~430 nm (allowing electronic transitions between π-π* orbitals of the porphyrin
ring [72]) and a Q band with a maximum at ~520 nm (transitions to the first excited singlet
state [72]). Generally, TPyP presents several Q sub-bands [73], the symmetry of the molecule
being responsible for their number [72]. Thus, another barely visible maximum at ~550 nm can
be identified in P3 and P4 samples that contain the same TPyP amount as the P0 sample. Due
to the strong ZnPc absorption, the other two maxima at ~590 nm and ~640 nm characteristic
to TPyP cannot be clearly identified in the UV–Vis spectra.

With regard to the emission properties, all PL spectra were dominated by the emission
band peaking at ~530 nm due to the glass substrate. However, in the case of the TPyP
film deposited by MAPLE on glass, the PL spectrum (Figure 7b inset) is present beside
the substrate emission, its specific split emission band with two maxima at ~660 nm and
~710 nm in agreement with other data reported for the TPyP layers deposited by vacuum
evaporation or MAPLE (using DMSO as solvent) [54,63]. This strong emission is not
identified in the PL spectra of the organic and composite films, most probably due to a
quenching effect that takes place between the components of the layers. In addition, the
emission associated to ZnPc at ~700 nm, which is usually a weak emission [63], cannot be
observed in the PL spectra of the investigated samples. It has to be noted that, due to their
small amount, the absorption and emission bands of the metal oxide nanoparticles are not
visible in the UV–Vis and PL spectra of the composite films.

Regarding the recombination of the charge carriers, this takes place most probably by
non-radiative processes, taking into account that the photoluminescence measurements
suggest that the emission is quenched in the composite films.

The J-V characteristics (Figure 8) were acquired in the dark (Figure 8a) and under
illumination (Figure 8b) on the structures based on the MAPLE deposited nanocomposite
films. In addition Figure 9 shows a schematic representation of the fabricated structures
based on ITO/PEDOT:PSS/nanocomposite/LiF/Al and the energy level diagram of the
constituent materials [46,54,74,75]. The J-V characteristics recorded in the dark (Figure 8a)
are strongly asymmetrically non-linear, suggesting that the structures have rectification
properties. In the following, the electrical parameters recorded for the structures based
on composite layers (P1–P4) are compared to those obtained on the reference layer based
only on the organic compounds (P0), taking into account that the electrical parameters
are influenced by the addition of metal oxide nanoparticles in the active layer. Thus, an
increase in the dark current density value (~3× 10−8 A/cm2) was recorded for the structure
prepared only with organic compounds (ZnPc:TPyP) in comparison to the value already
reported for the structures based on the same mixture but with the active layer deposited
from the other solvent (DMSO) [63]. A typical diode behavior (Figure 8a) is observed
for the structures containing ZnO nanoparticles. In our case, a current density of at least
one order higher, for an applied voltage of 1 V, was noted for the structures developed
with ZnO nanoparticles, compared to the reference cell. The result can be explained
taking into consideration the higher electron mobility of the metal oxide nanoparticles
(~2 × 10−3 cm2V−1s−1 [76]) with respect to that of the replaced n-type organic compound
(10−4 cm2V−1s−1 for the porphyrin derivatives [77]). Even the dark current density value
obtained for the structure based on the P3 composite film is lower compared to that recorded
for the structure containing the P0 film, and a small improvement was achieved for the
structure fabricated with a higher amount of CuO nanoparticles, P4. A study focused
on the hybrid films containing poly 3-hexylthiophene (P3HT), [6,6]-phenyl-C61-butyric
methyl ester (PCBM), and CuO nanoparticles (at various ratios) reported that the highest
obtained mobility was of approximately ~5 × 10−4 cm2V−1s−1 for a certain amount of
inorganic nanoparticles [68]. A possible explanation for the current density value acquired
in the case of the P3 sample can be linked to the presence of some defects that can affect the
carriers’ mobility.
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Further, the J-V characteristics of the structures developed with MAPLE prepared
layers were acquired under illumination (Figure 8b), taking into account that these films
feature significant absorption in the visible and that the electrical characteristics recorded
in the dark suggest that they can find application in the photovoltaic cell field. In addition,
relevant electrical parameters, such as the short-circuit current density (JSC), open circuit
voltage (VOC), and maximum power (Pmax), were calculated.

Excepting the structure based on the P1 film, all of the structures exhibited a pho-
tovoltaic effect. The JSC value interpolated from the J-V curve of the structure prepared
with the organic film (P0 sample) was 2.8 × 10−7 A/cm2, while the VOC value was 0.32 V
and the Pmax was 2 × 10−8 W. A small increase in the JSC value (3.5 × 10−7 A/cm2) and
a lowering in the VOC value (0.15 V) and Pmax (1.3 × 10−8 W) were recorded for the P2
sample. This result is in accordance with other studies reported on structures containing
ZnO nanoparticles, the addition of a large amount of inorganic nanostructures leading to a
decrease in the VOC value [46,74,78]. This effect was explained taking into consideration
the agglomeration of the nanoparticles that can favor the recombination of electron–hole
pairs within the bulk active layer.

Usually, the VOC value for the organic cells is provided by the difference between the
donor highest occupied molecular orbital (HOMO) and the acceptor lowest unoccupied
molecular orbital (LUMO) (Figure 9b). In the present study, for the ZnPc (donor) and TPyP
(acceptor), we considered the HOMO to be at 5.2 eV [46] and the LUMO to be at 4.1 eV [54],
respectively. In addition, the review from reference [79] reported that the VOC value can
be directly or indirectly affected by various parameters, such as the charge carriers recom-
bination, light intensity, morphology, electrode work function, donor/acceptor interface
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area, crystallinity, charge carriers density, etc. Thus, for the structures based on organic
films deposited by MAPLE, one of the factors that can influences the VOC value is the
crystallinity of the layers, a parameter that can be improved by applying some thermal
treatment to the near-amorphous organic layers deposited by MAPLE [46].

In the case of samples containing CuO nanoparticles, a lowering in the JSC value
(7.9 × 10−8 A/cm2) and in the Pmax (4.1× 10−9 W) was obtained for the P3 sample, whereas
an increase in the JSC value (3.6 × 10−7 A/cm2) and in Pmax (4.5 × 10−8 W) was achieved
for the P4 sample. These results can be explained by considering the following aspects:
the insufficient amount of CuO nanoparticles that can contribute to the photocurrent; the
reduced number of the photogenerated excitons, which, in turn, is due to the smaller
quantity of the principal donor (ZnPc in this case); and/or the defects generated during the
deposition of the film. With regard to the increase in the JSC value in the P4 sample, taking
into consideration that both P3 and P4 films present similar absorption properties and
roughness, the higher amount of CuO nanoparticles in the P4 sample can result in larger
interfaces that favor the exciton dissociation process. A recent report emphasized that the
presence of CuO nanoparticles does not significantly change the VOC in comparison to
the organic film based on P3HT:PCBM [80]. A similar effect was observed in this study:
regardless of the CuO nanoparticles amount added to the organic mixture, the VOC values
recorded for the P3 and P4 samples, 0.35 V and 0.36 V, respectively, are very close to that
obtained for the P0 sample containing only the ZnPc:TPyP mixture.

Concerning the influence of the type and amount of the metal oxide nanoparticles
on the electrical properties of the investigated structures, it has to be mentioned that the
quantity of inorganic nanoparticles was added in such a manner as to preserve the same
donor:acceptor ratio (1:1.5), where the amount of CuO in the P4 sample is practically smaller
than that of ZnO in the P2 sample. In the case of the samples based on CuO nanoparticles,
the maximum content at which the electrical properties can be altered has probably not
been reached.

Ergo, the structures based on nanocomposite films deposited by MAPLE are sensitive
to the amount of metal oxide nanoparticles added in the organic mixture, an improvement
in the electrical parameters being achieved only for the photovoltaic structures containing
the suitable organic and inorganic components in an optimum ratio.

4. Conclusions

Organic and nanocomposite films based on macrocyclic compounds (ZnPc:TPyP) and
metal oxide (ZnO or CuO) nanoparticles were prepared by MAPLE using 1,4-dioxane as a
solvent. The FTIR spectra confirm the preservation of the chemical structure of the organic
compounds in the MAPLE deposited films. The UV–Vis spectra disclose the characteristic
absorption bands of ZnPc and TPyP while the PL spectra reveal a quenching effect of the
specific intense emission band of TPyP. The FESEM images evidence agglomerated particles
on the composite film surface but their presence has no significant impact on the roughness
of the deposited MAPLE layers. The AFM images proved that the films deposited by
MAPLE using 1,4-dioxane as a solvent are characterized by a low roughness (an essential
feature of films with applications in optoelectronic devices) compared to similar films
deposited from other solvents. The addition of metal oxide nanoparticles influences the
electrical properties of fabricated composite structures depending on their conduction type
and amount. An increase in the current density value (recorded in the dark) was obtained
for composite films that contain a higher amount of nanoparticles. The J-V characteristics
recorded under illumination show that most structures developed with MAPLE deposited
films present a photovoltaic effect. The best electrical parameters were obtained for the
structure based on film with a higher amount of CuO nanoparticles. Consequently, by
tuning the composition and ratio between the organic and inorganic components of the
composite films, an improvement in the electrical properties of the structures based on such
MAPLE deposited layers can be achieved, making them suitable for potential applications
in the field of optoelectronic devices.
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