Reliability Study of Magnesium Oxychloride-Coated Reinforced Concrete Based on Gumbel Distribution
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Materials
2.2. Test Scheme
3. Test Results and Data Analysis
3.1. Durability Change Rule of MOCRC
3.2. SEM Test Results of MOCRC
3.3. Life Data of MOCRC
4. Durability Analysis of MOCRC Based on Gumbel Distribution
4.1. Gumbel Distribution Basic Model
4.2. Gumbel Extremum Distribution Fit Test and Parameter Estimation
4.3. Gumbel Distribution Fit Test Results
4.4. Prediction and Evaluation of Accelerated Corrosion Life of MOCRC
5. Conclusions
- The durability of MOCRC specimens with different protective layer thickness is different under the accelerated corrosion effect of electrification, and the accelerated corrosion life of Group B specimens is greater than that of Group A specimens.
- Using the electrified accelerated corrosion test, the durability of MOCRC can be better evaluated using the relative dynamic modulus of elasticity rather than using relative mass as a parameter.
- The reliability of MOCRC obtained by the Gumbel distribution is basically consistent with the actual test data, indicating that it is effective to use the Gumbel distribution to predict the reliability of MOCRC.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jing, W.; Yu, H.; Wu, C.; Li, Y.; Dong, J.; Zheng, L. Hydration Kinetic and Influencing Parameters in Hydration Process of Magnesium Oxychloride Cement. J. Chin. Ceram. Soc. 2013, 57, 588–596. [Google Scholar]
- Qiao, H.; Wang, P.; Wei, G. Corrosion Resistance of Coated Steel Bars in Magnesium Cement Concrete Based on EIS. J. Mater. Sci. Eng. 2017, 35, 987–992. [Google Scholar]
- Qiao, H.; Wei, G.; Chen, G.; Fan, L. Experimental study on corrosion of steel bar in magnesium cement concrete based on polarization curves. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2016, 44, 6–10. [Google Scholar]
- Qiao, H.; Wei, G.; Wang, P.; Chen, G.; Cheng, Q. Experimental Study on Steel Reinforcement Protection in Magnesium Oxychloride Cement Concrete under Sulfate Environment. J. Southwest Jiaotong Univ. 2017, 52, 247–253. [Google Scholar]
- Du, Y.; Cullen, M.; Li, C. Structrual effects of simultaneous loading and reinforcement corrosion on performance of concrete beams. Constr. Build. Mater. 2013, 39, 148–152. [Google Scholar] [CrossRef]
- Ou, G.; Feng, T.; Debao, L.; Qingtao, L. Theoretical study of similar experimental method for durability of concrete under artificial climate environment. J. Wuhan Univ. Technol. (Mater. Sci. Ed.) 2016, 31, 345–354. [Google Scholar]
- Malumbel, G.; Alexander, M.; Moyo, P. Interaction between corrosion crack width and steel loss in RC beams corroded under load. Cem. Concr. Res. 2010, 40, 1419–1428. [Google Scholar] [CrossRef]
- Kashani, M.; Crewe, A.; Alexander, N. Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. Corros. Sci. 2013, 73, 208–221. [Google Scholar] [CrossRef]
- Gan, W.; Jin, W.; Gao, M. Applicability study on accelerated corrosion methods of steel bars in concrete structure. J. Build. Struct. 2011, 32, 41–47. [Google Scholar]
- Ma, Y.; Che, Y.; Gong, J. Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading. Constr. Build. Mater. 2019, 29, 548–556. [Google Scholar] [CrossRef]
- Yang, X.; Wu, T. Relationship between the Current and Corrosion Ratio in Corroded Reinforced Concrete Component Obtained by Artificial Accelerated Corrosion Method. Bull. Chin. Ceram. Soc. 2016, 35, 3410–3416. [Google Scholar]
- Wu, F.; Gong, J. Calculation of steel corrsion rate based on corrosive crack beams. J. Build. Struct. 2013, 34, 144–150. [Google Scholar]
- Abosrra, L.; Ashour, A. Corrosion of steel reinforcement in concrete of different compressive strengths. Constr. Build. Mater. 2011, 25, 3915–3925. [Google Scholar] [CrossRef]
- Feng, Q.; Qiao, H.; Zhu, B.; Wang, P. Experimental study on accelerated corrosion of reinforced concrete in wet salt sand environment. J. Build. Mater. 2018, 21, 568–575. [Google Scholar]
- Yang, L.; Zhou, M.; Chen, Z. Quantitative analysis and design for durability of marine concrete structures. J. Civ. Eng. 2014, 47, 70–79. [Google Scholar]
- Shi, X.; Wang, X.; Wang, Q.; Zhang, T.; Yang, F.; Xu, Y.; Zhan, J. Experimental Analysis and Establishment of Strength Attenuation Model of POM Fiber Reinforced Geopolymeric Recycled Concrete under Freeze-Thaw Cycles. Materials 2023, 16, 1699. [Google Scholar] [CrossRef] [PubMed]
- Kousa, H.; Ferreair, R.; Holt, E.; Levio, M.; Vesikari, E. Effect of coupled deterioration by freeze-thaw, carbonation and chlorrides on concrete service life. Cem. Concr. Compos. 2014, 47, 32–40. [Google Scholar] [CrossRef]
- Alrayes, O.; Könke, C.; Hamdia, K. A Numerical Study of Crack Mixed Mode Model in Concrete Material Subjected to Cyclic Loading. Materials 2023, 16, 1916. [Google Scholar] [CrossRef]
- Ryanp, C.; O’Connor, A. Probabilistic analysis of the time to chloride induced corrosion for different Self-Compacting Concretes. Constr. Build. Mater. 2013, 47, 1106–1116. [Google Scholar] [CrossRef]
- Qiao, H.; Guo, X.; Zhong, B. Accelerated Life Test of Concrete Under Multiple Factors Based on Three-Parameter Weibull Distribution. Mater. Rep. 2019, 33, 639–643. [Google Scholar]
- Qian, L.; Wang, H.; Zhang, R. Gumbel Extreme Hydrological Frequency Analysis Model in Situations of Insufficient Data. Adv. Eng. Sci. 2019, 51, 41–48. [Google Scholar]
- Zhang, X.; Cao, N.; Li, Y. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution. J. Chin. Soc. Corros. Prot. 2016, 36, 370–374. [Google Scholar]
- Huang, P.; Hu, F.; Dong, F. Parameter estimation of Gumbel distribution and its application to pitting corrosion depth of concrete girder bridges. Clust. Comput. 2018, 22, 53405–53411. [Google Scholar] [CrossRef]
- Wang, P.; Qiao, H.; Li, Y.; Chen, K.; Nian, T. Durability of organic coated reinforced magnesium oxychloride cement concrete. Struct. Concr. 2021, 22, 2595–2610. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, J.; Huang, S.; Zhao, B. Experimental study of frost-resistance properties of silica fume concrete. Appl. Mech. Mater. 2014, 584–586, 1626–1629. [Google Scholar] [CrossRef]
- Nie, Y.; Qian, C. Evaluation indices analysis and sulfate attack degree prediction of concrete based on RST. J. Southeast Univ. (Nat. Sci. Ed.) 2013, 43, 594–598. [Google Scholar]
- Wang, K.; Nelsen, D.; Nixon, W. Damaging effects of deicing chemicals on concrete materials. Cem. Concr. Compos. 2006, 28, 173–188. [Google Scholar] [CrossRef]
- Sotiriadis, K.; Nikolopoulou, E.; Tsivilis, S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature. Cem. Concr. Compos. 2012, 34, 903–910. [Google Scholar] [CrossRef]
MgO | Active MgO | CaO | SiO2 | Loss of Ignition | Others |
---|---|---|---|---|---|
90 | 48.6 | 1.1 | 3.2 | 3.8 | 1.9 |
MgCl2·6H2O | SO4− | K+ + Na+ | CaCl2 | Other |
---|---|---|---|---|
96 | 0.4 | 1.2 | 0.4 | 2.0 |
Mg | Ca | Fe2O3 | Al2O | SO | Loss of Ignition | SiO |
---|---|---|---|---|---|---|
1.19 | 5.3 | 9.43 | 20.93 | 0.41 | 3.26 | 54.32 |
Sediment Percentage/% | Clay Lump/% | Apparent Density/(kg/m3) | Loose Packing Density/(kg/m3) | Compact Packing Density/(kg/m3) | Voidage/% | Moisture Content/% |
---|---|---|---|---|---|---|
2.396 | 0.15 | 2610 | 1600 | 1640 | 38.889 | 2.737 |
Sediment Percentage/% | Clay Lump/% | Apparent Density/(kg/m3) | Loose Packing Density/(kg/m3) | Compact Packing Density/(kg/m3) | Voidage/% | Moisture Content/% |
---|---|---|---|---|---|---|
0.5 | 0.2 | 2780.0 | 1520.0 | 1640.0 | 45.3 | 0.3 |
MgO/kg | Water Reducer/kg | Fly Ash/kg | Water Resistant Agent/kg | Sand/kg | Pebbles/kg | MgCl2/kg | Water/kg |
---|---|---|---|---|---|---|---|
388.96 | 16.02 | 68.64 | 4.58 | 625.00 | 1162.00 | 147.81 | 135.59 |
Anion Content/mg·kg−1 | Cation Content/mg·kg−1 | Total Amount/% | ||||||
---|---|---|---|---|---|---|---|---|
Project | CO32− | HCO3− | SO42− | Cl− | Ca2+ | Mg2+ | Na+ + K+ | / |
59 | 181 | 15,646 | 81,016 | 5840 | 379 | 22,887 | 12.603 |
Specimen | A–D | P | Location Parameter | Scale Parameter |
---|---|---|---|---|
Group A | 0.247 | >0.25 | 501.7 | 36.97 |
Group B | 0.389 | >0.25 | 991.6 | 30.50 |
Specimen | Failure Rate/% | Failure Time/h | 95% Confidence Interval |
---|---|---|---|
H25 | 30 | 463.525 | (428.076, 498.974) |
70 | 508.792 | (485.327, 532.257) | |
H44 | 30 | 960.138 | (931.153, 989.123) |
70 | 997.147 | (977.967, 1016.53) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qiao, H.; Yang, A. Reliability Study of Magnesium Oxychloride-Coated Reinforced Concrete Based on Gumbel Distribution. Materials 2023, 16, 2521. https://doi.org/10.3390/ma16062521
Li Y, Qiao H, Yang A. Reliability Study of Magnesium Oxychloride-Coated Reinforced Concrete Based on Gumbel Distribution. Materials. 2023; 16(6):2521. https://doi.org/10.3390/ma16062521
Chicago/Turabian StyleLi, Yuanke, Hongxia Qiao, and An Yang. 2023. "Reliability Study of Magnesium Oxychloride-Coated Reinforced Concrete Based on Gumbel Distribution" Materials 16, no. 6: 2521. https://doi.org/10.3390/ma16062521
APA StyleLi, Y., Qiao, H., & Yang, A. (2023). Reliability Study of Magnesium Oxychloride-Coated Reinforced Concrete Based on Gumbel Distribution. Materials, 16(6), 2521. https://doi.org/10.3390/ma16062521