Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Optimization of Hafnium Oxynitride Thin Films
2.2. Electrical Characterization of MOS Devices
2.3. Structural Characterization of Dielectric Films
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wong, H.; Iwai, H. On the scaling issues and high-k replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectron. Eng. 2006, 83, 1867–1904. [Google Scholar] [CrossRef]
- Spassov, D.; Paskaleva, A.; Krajewski, T.A.; Guziewicz, E.; Luka, G. Hole and electron trapping in HfO2/Al2O3 nanolaminated stacks for emerging non-volatile flash memories. Nanotechnology 2018, 29, 505206. [Google Scholar] [CrossRef]
- Koike, M.; Ino, T.; Koyama, M.; Kamata, Y.; Kamimuta, Y.; Suzuki, M.; Takashima, A.; Mitani, Y.; Nishiyama, A.; Tsunashima, Y. Ultra-thin (EOT < 1:0nm) amorphous HfSiON gate insulator with high Hf concentration for high-performance logic applications. In Proceedings of the 2003 International Conference on Solid State Devices and Materials, Tokyo, Japan, 16–18 September 2003; pp. 52–53. [Google Scholar]
- Driad, R.; Schmidt, R.; Kirste, L.; Loesch, R.; Mikulla, M.; Ambacher, O. Hafnium oxide passivation of InGaAs/InP heterostructure bipolar transistors by electronbeam evaporation. Phys. Status Solidi 2012, C9, 381–384. [Google Scholar] [CrossRef]
- Khoshman, J.M.; Khan, A.; Kordesch, M.E. Amorphous hafnium oxide thin films for antireflection optical coatings. Surf. Coat. Technol. 2008, 202, 2500–2502. [Google Scholar] [CrossRef]
- Mazurak, A.; Mroczyński, R.; Jasiński, J.; Tanous, D.; Majkusiak, B.; Kano, S.; Sugimoto, H.; Fujii, M.; Valenta, J. Technology and characterization of MIS structures with co-doped silicon nanocrystals (Si-NCs) embedded in hafnium oxide (HfOx) ultra-thin layers. Microelectron. Eng. 2017, 178, 298–303. [Google Scholar] [CrossRef]
- Pi, N.-W.; Zhang, M.; Jiang, J.; Belosludtsev, A.; Vlček, J.; Houška, J.; Meletis, E.I. Microstructure of hard and optically transparent HfO2 films prepared by high-power impulse magnetron sputtering with a pulsed oxygen flow control. Thin-Solid Films 2016, 619, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Robertson, J. Interfaces and defects of high-k oxides on silicon. Solid-State Electron. 2005, 49, 283–293. [Google Scholar] [CrossRef]
- Groeseneken, G.; Pantisano, L.; Ragnarsson, D.R.; Houssa, M.; Kauerauf, T.; Roussel, P.; De Gendt, S.; Heyns, M. Achievements and challenges for the electrical performance of MOSFET’s with high-k gate dielectrics. In Proceedings of the 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2004 (IEEE Cat. No. 04TH8743), Hsinchu, Taiwan, 5–8 July 2004; pp. 147–155. [Google Scholar]
- Shaeffer, J.K.; Samavedam, S.B.; Gilmer, D.C.; Dhandapani, V.; Tobin, P.J.; Mogab, J.; Nguyen, B.-Y.; White, B.E., Jr.; Dakshina-Murthy, S.; Rai, R.S.; et al. Physical and electrical properties of metal gate electrodes on HfO2 gate dielectrics. J. Vac. Sci. Technol. (B) 2003, 21, 11–17. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhu, F.; Yamada, N.; Kwong, D.L. A Simple Approach to Fabrication of High-Quality HfSiON Gate Dielectrics With Improved nMOSFET Performances. IEEE Trans. Electron Devices 2004, 51, 1798–1804. [Google Scholar] [CrossRef]
- Kang, C.S.; Cho, H.-J.; Onishi, K.; Choi, R.; Kim, Y.H.; Nieh, R.; Han, J.; Krishnan, S.; Shahriar, A.; Lee, J.C. Nitrogen concentration effects and performance improvement of MOSFETs using thermally stable HfOxNy gate dielectrics. In Proceedings of the Digest. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 December 2002; p. 865. [Google Scholar]
- Kang, C.S.; Cho, H.-J.; Choi, R.; Kim, Y.H.; Kang, C.Y.; Rhee, S.J. The electrical and material characterization of hafnium oxynitride gate dielectrics with TaN-gate electrode. IEEE Trans. Electron Devices 2004, 51, 220–227. [Google Scholar] [CrossRef]
- Kang, C.S.; Cho, H.-J.; Onishi, K.; Nieh, R.; Choi, R.; Gopalan, S. Bonding states and electrical properties of ultrathin HfOxNy gate dielectrics. Appl. Phys. Lett. 2002, 81, 2593. [Google Scholar] [CrossRef]
- Chio, K.J.; Kim, J.H.; Yoon, S.G.; Shin, W.C. Structural and electrical properties of HfO𝑥N𝑦 and HfO2 gate dielectrics in TaN gated nMOSCAP and nMOSFET devices. J. Vac. Sci. Technol. B 2004, 22, 1755. [Google Scholar] [CrossRef]
- Kang, J.F.; Yu, H.Y.; Ren, C.; Li, M.F.; Chan, D.S.H.; Hu, H. Thermal stability of nitrogen incorporated in HfN𝑥O𝑦 gate dielectrics prepared by reactive sputtering. Appl. Phys. Lett. 2004, 84, 1588. [Google Scholar] [CrossRef]
- Belosludtsev, A.; Houška, J.; Vlček, J.; Haviar, S.; Čerstvy, R.; Rezek, J.; Kettner, M. Structure and properties of Hf-O-N films prepared by high-rate reactive HiPIMS with smoothly controlled composition. Ceram. Int. 2017, 43, 5661–5667. [Google Scholar] [CrossRef]
- Vlček, J.; Rezek, J.; Houška, J.; Kozák, T.; Kohout, J. Benefits of the controlled reactive high-power impulse magnetron sputtering of stoichiometric ZrO2 films. Vacuum 2015, 114, 131–141. [Google Scholar] [CrossRef]
- Tiron, V.; Velicu, I.-L. Understanding the ion acceleration mechanism in bipolar HiPIMS: The role of the double layer structure developed in the after-glow plasma. Plasma Sources Sci. Technol. 2020, 29, 015003. [Google Scholar] [CrossRef]
- Schmaljohann, F.; Hagedorn, D.; Löffler, F. Electrical insulation performance of aluminum oxide layers on metallic substrates—HiPIMS compared to RF-MS. Surf. Coat. Technol. 2019, 361, 119–122. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Wang, P.-C.; Lin, L.-H.; Wang, J.-C. Antiferroelectric titanium-doped zirconia thin films deposited via HiPIMS for highly efficient electrocaloric applications. J. Eur. Ceram. Soc. 2021, 41, 3387–3396. [Google Scholar] [CrossRef]
- Yin, G.Z. Orthogonal design for process optimization and its application in plasma etching. Solid State Technol. 1987, 30, 127–132. [Google Scholar]
- Lye, L.M. Tools and toys for teaching design of experiments methodology. In Proceedings of the 33rd Annual General Conference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2005. [Google Scholar]
- Belosludtsev, A.; Yakimov, Y.; Mroczyński, R.; Stanionyte, S.; Skapas, M.; Buinovskis, D.; Kyžas, N. Effect of Annealing on Optical, Mechanical, Electrical Properties and Structure of Scandium Oxide Films. Phys. Status Solidi A 2019, 216, 1900122. [Google Scholar] [CrossRef]
- Majkusiak, B.; Jakubowski, A. A technical formula for determining the insulator capacitance in a MOS structure. Solid-State Electron. 1992, 35, 223–224. [Google Scholar] [CrossRef]
- Terman, L.M. An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes. Solid-State. Electron. 1962, 5, 285. [Google Scholar] [CrossRef]
- Seweryn, A.; Pietruszka, R.; Witkowski, B.S.; Wierzbicka, A.; Jakiela, R.; Sybilski, P.; Godlewski, M. Structural and Electrical Parameters of ZnO Thin Films Grown by ALD with either Water or Ozone as Oxygen Precursors. Crystals 2019, 9, 554. [Google Scholar] [CrossRef] [Green Version]
- Salgueiredo, E.; Amaral, M.; Neto, M.A.; Fernandes, A.J.S.; Oliveira, F.J.; Silva, R.F. HFCVD diamond deposition parameters optimized by a Taguchi Matrix. Vacuum 2011, 85, 701–704. [Google Scholar] [CrossRef]
- Kasman, S. Impact of parameters on the process response: A Taguchi orthogonal analysis for laser engraving. Measurement 2013, 46, 2577–2584. [Google Scholar] [CrossRef]
- Choi, C.H.; Jeon, T.S.; Clark, R.; Kwong, D.L. Electrical Properties and Thermal Stability of CVD HfOxNy Gate Dielectric With Poly-Si Gate Electrode. IEEE Electron Device Lett. 2003, 24, 215–217. [Google Scholar] [CrossRef]
- Ino, T.; Kamimuta, Y.; Suzuki, M.; Koyama, M.; Nishiyama, A. Dielectric Constant Behavior of Hf–O–N System. Jap. J. App. Phys. 2006, 45, 2908–2913. [Google Scholar] [CrossRef]
- Chiu, F.C.; Lin, S.A.; Lee, Y.M. Electrical properties of metal–HfO2–silicon system measured from metal–insulator–semiconductor capacitors and metal–insulator–semiconductor field–effect transistors using HfO2 gate dielectric. Microelectron. Reliab. 2005, 45, 961–964. [Google Scholar] [CrossRef]
- Polakowski, P.; Johannes, M. Ferroelectricity in undoped hafnium oxide. Appl. Phys. Lett. 2015, 106, 232905. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, L.D.; Liu, M.; Zhang, J.P.; He, G. The effect of nitrogen concentration on the band gap and band offsets of HfOxNy gate dielectrics. Appl. Phys. Lett. 2008, 92, 122901. [Google Scholar] [CrossRef]
- Crist, B.V. Handbooks of Monochromatic XPS Spectra; XPS International, Inc.: Ames, IA, USA, 1999. [Google Scholar]
- Delcroix, P.; Blonkowski, S.; Kogelschatz, M.; Rafik, M.; Gourhant, O.; JeanJean, D.; Beneyton, R.; Roy, D.; Federspiel, X.; Martin, F.; et al. SiON and SiO2/HfSiON gate oxides time dependent dielectric breakdown measurements at nanoscale in ultra high vacuum. Microelectron. Eng. 2011, 88, 1376–1379. [Google Scholar] [CrossRef]
- Guo, C.; Yin, S.; Donga, Q.; Sato, T. Simple route to (NH4)xWO3 nanorods for near infrared absorption. Nanoscale 2012, 4, 3394–3398. [Google Scholar] [CrossRef]
- Murdoch, B.J.; Ganesan, R.; McKenzie, D.R.; Bilek, M.M.M.; McCulloch, D.G.; Partridge, J.G. Influence of nitrogen-related defects on optical and electrical behaviour in HfO2-xNx deposited by high-power impulse magnetron sputtering. Appl. Phys. Lett. 2015, 107, 112903. [Google Scholar] [CrossRef]
- Cho, H.-J.; Park, D.-G.; Yeo, I.-S.; Roh, J.-S.; Won Park, J. Characteristics of TaOxNy Gate Dielectric with Improved Thermal Stability. Jpn. J. Appl. Phys. 2001, 40 Pt 1, 2814. [Google Scholar] [CrossRef]
- Mroczyński, R.; Kwietniewski, N.; Ćwil, M.; Hoffmann, P.; Beck, R.B.; Jakubowski, A. Improvement of electro-physical properties of ultra-thin PECVD silicon oxynitride layers by high-temperature annealing. Vacuum 2008, 82, 1013–1019. [Google Scholar] [CrossRef]
- Peng, T.C.; Xiao, X.H.; Han, X.Y.; Zhou, X.D.; Wu, W.; Ren, F.; Jiang, C.Z. Characterization of DC reactive magnetron sputtered NiO films using spectroscopic ellipsometry study. Appl. Surf. Sci. 2011, 257, 5908. [Google Scholar] [CrossRef]
- He, G.; Fang, Q.; Li, G.H.; Zhang, J.P.; Zhang, L.D. Structural and optical properties of nitrogen-incorporated HfO2 gate dielectrics deposited by reactive sputtering. Appl. Surf. Sci. 2007, 253, 8483–8488. [Google Scholar] [CrossRef]
- Puźniak, M.; Gajewski, W.; Żelechowski, M.; Jamroz, J.; Gertych, A.; Zdrojek, M.; Mroczyński, R. Technology and optimization of hafnium oxynitride (HfOxNy) thin-films formed by pulsed-DC reactive magnetron sputtering for MIS devices. Microelectron. Eng. 2020, 228, 111332. [Google Scholar] [CrossRef]
- Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R. Low temperature processed hafnium oxide: Structural and electrical properties. Mater. Sci. Semicond. Process. 2006, 9, 1125–1132. [Google Scholar] [CrossRef]
- Quevedo-Lopeza, M.A.; Krishnan, S.A.; Kirschb, P.D.; Pant, G.; Gnade, B.E.; Wallace, R.M. Ultrascaled hafnium silicon oxynitride gate dielectrics with excellent carrier mobility and reliability. Appl. Phys. Lett. 2005, 87, 262902. [Google Scholar] [CrossRef]
- Gui, D.; Kang, J.; Yu, H.; Lim, H.F. SIMS study on N diffusion in hafnium oxynitride. Appl. Surf. Sci. 2004, 231–232, 590–593. [Google Scholar] [CrossRef]
Pressure (mTorr) * | HiPIMS Power (W) | Oxygen (O2) Flow (sccm) * | Nitrogen (N2) Flow (sccm) * |
---|---|---|---|
3 | 300 | 5 | 5 |
6 | 500 | 10 | 10 |
9 | 700 | 15 | 15 |
Type of the Process | Pressure (mTorr) | HiPIMS Power (W) | Oxygen (O2) Flow (sccm) | Nitrogen (N2) Flow (sccm) |
---|---|---|---|---|
Optimal | 2 | 100 | 20 | 3 |
Non-optimal | 9 | 700 | 5 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puźniak, M.; Gajewski, W.; Seweryn, A.; Klepka, M.T.; Witkowski, B.S.; Godlewski, M.; Mroczyński, R. Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films. Materials 2023, 16, 2539. https://doi.org/10.3390/ma16062539
Puźniak M, Gajewski W, Seweryn A, Klepka MT, Witkowski BS, Godlewski M, Mroczyński R. Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films. Materials. 2023; 16(6):2539. https://doi.org/10.3390/ma16062539
Chicago/Turabian StylePuźniak, Mirosław, Wojciech Gajewski, Aleksandra Seweryn, Marcin T. Klepka, Bartłomiej S. Witkowski, Marek Godlewski, and Robert Mroczyński. 2023. "Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films" Materials 16, no. 6: 2539. https://doi.org/10.3390/ma16062539
APA StylePuźniak, M., Gajewski, W., Seweryn, A., Klepka, M. T., Witkowski, B. S., Godlewski, M., & Mroczyński, R. (2023). Studies of Electrical Parameters and Thermal Stability of HiPIMS Hafnium Oxynitride (HfOxNy) Thin Films. Materials, 16(6), 2539. https://doi.org/10.3390/ma16062539