A Reflectivity Enhanced 3D Optical Storage Nanostructure Application Based on Direct Laser Writing Lithography
Abstract
:1. Introduction
2. Optical Data Information Encoding
2.1. Data Encoding Strategy
2.2. Data Encoding Based on Structure-Specific Slope Angle
2.3. Data Encoding Based on Azimuthal Variation
2.4. Data Encoding Combined Structure-Specific Slope Angle and Azimuthal Variation
3. Analysis and Evaluation of Readout Information
3.1. Optical Data Information Readout Based on ANN
3.2. Readout Result Based on Spectrum Response
4. Toward Higher Storage Density
5. Conclusions
6. Prospection
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Satoh, I.; Ohara, S.; Akahira, N.; Takenaga, M. Key technology for high density rewritable DVD (DVD-RAM). IEEE Trans. Magn. 1998, 34, 337–342. [Google Scholar] [CrossRef]
- Borg, H.J.; Van Schijndel, M.; Rijpers, J.C.N.; Lankhorst, M.H.R.; Zhou, G.; Dekker, M.J.; Ubbens, I.P.D.; Kuijper, M. Phase-change media for high-numerical-aperture and blue-wavelength recording. Jpn. J. Appl. Phys. 2001, 40, 1592. [Google Scholar] [CrossRef]
- Taylor, A.B.; Kim, J.; Chon, J.W.M. Detuned surface plasmon resonance scattering of gold nanorods for continuous wave multilayered optical recording and readout. Opt. Express 2012, 20, 5069–5081. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.B.; Michaux, P.; Mohsin, A.S.M.; Chon, J.W.M. Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage. Opt. Express 2014, 22, 13234–13243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gecevičius, M.; Beresna, M.; Kazansky, P.G. Seemingly unlimited lifetime data storage in nanostructured glass. Phys. Rev. Lett. 2014, 112, 33901. [Google Scholar] [CrossRef]
- Gu, M.; Li, X.; Cao, Y. Optical storage arrays: A perspective for future big data storage. Light Sci. Appl. 2014, 3, e177. [Google Scholar] [CrossRef] [Green Version]
- Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for optical data storage. Nat. Rev. Mater. 2016, 1, 16070. [Google Scholar] [CrossRef]
- Xu, D.; Hu, H.; He, L. Multi-wavelength and multi-level optical storage based on photochromic materials. In Proceedings of the Seventh International Symposium on Optical Storage (ISOS 2005), Zhanjiang, China, 2–6 April 2005; Volume 5966, pp. 40–44. [Google Scholar]
- Xu, D. Multi-Dimensional Optical Storage; Springer: Berlin/Heidelberg, Germany, 2016; ISBN 9811009325. [Google Scholar]
- Riesen, N.; Pan, X.; Badek, K.; Ruan, Y.; Monro, T.M.; Zhao, J.; Ebendorff-Heidepriem, H.; Riesen, H. Towards rewritable multilevel optical data storage in single nanocrystals. Opt. Express 2018, 26, 12266–12276. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.C.; Zhang, L.; Sun, J. Optical properties of dithienylethene and its applications in super-resolution optical storage. Chin. J. Lasers 2018, 45, 903001. [Google Scholar]
- Tominaga, J.; Nakano, T.; Atoda, N. An approach for recording and readout beyond the diffraction limit with an Sb thin film. Appl. Phys. Lett. 1998, 73, 2078–2080. [Google Scholar] [CrossRef]
- Zeng, B.J.; Ni, R.W.; Huang, J.Z.; Li, Z.; Miao, X.S. Polarization-based multiple-bit optical data storage. J. Opt. 2014, 16, 125402. [Google Scholar] [CrossRef]
- Mottaghi, M.D.; Dwyer, C. Thousand-Fold Increase in Optical Storage Density by Polychromatic Address Multiplexing on Self-Assembled DNA Nanostructures. Adv. Mater. 2013, 25, 3593–3598. [Google Scholar] [CrossRef] [PubMed]
- Coufal, H.J.; Psaltis, D.; Sincerbox, G.T. Holographic Data Storage; Springer: Berlin/Heidelberg, Germany, 2000; Volume 8. [Google Scholar]
- Yang, D.; Lei, Z.; Li, L.; Shen, W.; Li, H.; Gui, C.; Song, Y. High optical storage density using three-dimensional hybrid nanostructures based on machine learning. Opt. Lasers Eng. 2023, 161, 107347. [Google Scholar] [CrossRef]
- Lee, H.-E.; Kim, R.M.; Ahn, H.-Y.; Lee, Y.Y.; Byun, G.H.; Im, S.W.; Mun, J.; Rho, J.; Nam, K.T. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020, 11, 263. [Google Scholar] [CrossRef] [Green Version]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.-M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-S.; Shrestha, V.R.; Yue, W.; Gao, S.; Lee, S.-S.; Kim, E.-S.; Choi, D.-Y. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks. Sci. Rep. 2017, 7, 2556. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Swain, A.; Unni, R.; Zheng, Y. Decoding optical data with machine learning. Laser Photon. Rev. 2021, 15, 2000422. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Wang, D. Adaptive demodulator using machine learning for orbital angular momentum shift keying. IEEE Photonics Technol. Lett. 2017, 29, 1455–1458. [Google Scholar] [CrossRef]
- Doster, T.; Watnik, A.T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks. Appl. Opt. 2017, 56, 3386–3396. [Google Scholar] [CrossRef]
- Chugh, S.; Gulistan, A.; Ghosh, S.; Rahman, B.M.A. Machine learning approach for computing optical properties of a photonic crystal fiber. Opt. Express 2019, 27, 36414–36425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Wiecha, P.R.; Lecestre, A.; Mallet, N.; Larrieu, G. Pushing the limits of optical information storage using deep learning. Nat. Nanotechnol. 2019, 14, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, S.; Hoff, B.H.; Maier, S.A.; de Mello, J.C. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. Adv. Sci. 2021, 8, 2102756. [Google Scholar] [CrossRef] [PubMed]
- Bernardeschi, I.; Ilyas, M.; Beccai, L. A review on active 3D microstructures via direct laser lithography. Adv. Intell. Syst. 2021, 3, 2100051. [Google Scholar] [CrossRef]
- Sun, C.; Fang, N.; Wu, D.M.; Zhang, X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sensors Actuators A Phys. 2005, 121, 113–120. [Google Scholar] [CrossRef]
- Guo, R.; Xiao, S.; Zhai, X.; Li, J.; Xia, A.; Huang, W. Micro lens fabrication by means of femtosecond two photon photopolymerization. Opt. Express 2006, 14, 810–816. [Google Scholar] [CrossRef]
- Li, W.; Yu, M.; Sun, J.; Mochizuki, K.; Chen, S.; Zheng, H.; Li, J.; Yao, S.; Wu, H.; Ong, B.S. Crack engineering for the construction of arbitrary hierarchical architectures. Proc. Natl. Acad. Sci. USA 2019, 116, 23909–23914. [Google Scholar] [CrossRef] [Green Version]
- Rudenko, T.E.; Nazarov, A.N.; Lysenko, V.S. The advancement of silicon-on-insulator (SOI) devices and their basic properties. Semicond. Phys. Quantum Electron. Optoelectron. 2020, 23, 227–252. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Arbouet, A.; Girard, C.; Lecestre, A.; Larrieu, G.; Paillard, V. Evolutionary multi-objective optimization of colour pixels based on dielectric nanoantennas. Nat. Nanotechnol. 2017, 12, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, L.; Yang, D.; Lei, Z.; Sun, Q.; Chen, Z.; Song, Y. A Reflectivity Enhanced 3D Optical Storage Nanostructure Application Based on Direct Laser Writing Lithography. Materials 2023, 16, 2668. https://doi.org/10.3390/ma16072668
Song L, Yang D, Lei Z, Sun Q, Chen Z, Song Y. A Reflectivity Enhanced 3D Optical Storage Nanostructure Application Based on Direct Laser Writing Lithography. Materials. 2023; 16(7):2668. https://doi.org/10.3390/ma16072668
Chicago/Turabian StyleSong, Lei, Dekun Yang, Zhidan Lei, Qimeng Sun, Zhiwen Chen, and Yi Song. 2023. "A Reflectivity Enhanced 3D Optical Storage Nanostructure Application Based on Direct Laser Writing Lithography" Materials 16, no. 7: 2668. https://doi.org/10.3390/ma16072668
APA StyleSong, L., Yang, D., Lei, Z., Sun, Q., Chen, Z., & Song, Y. (2023). A Reflectivity Enhanced 3D Optical Storage Nanostructure Application Based on Direct Laser Writing Lithography. Materials, 16(7), 2668. https://doi.org/10.3390/ma16072668