Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Introduction
2.2. Forming and Preparation Methods
2.3. Optimisation Model for Hydrogel CDDS
- (1)
- Because the polyacrylamide-sodium alginate dual-network hydrogel degrades insignificantly when stored in water for 6 months [45], the effect of the degradative property of the hydrogel on drug release was ignored. During optimisation, the mechanism of drug release was diffusion, and the diffusion coefficient of the drug in the hydrogel was constant.
- (2)
- In order to meet the clinical conditions as much as possible, the parameters in the model were all values at a temperature of 37 °C.
- (3)
- The drug was only released from the top surface.
- (1)
- The drug-reservoir boundary is the red boundary shown in Figure 1, during the drug delivery, its concentration was 41.59 mol/m3, which is the saturation concentration of tetracycline hydrochloride.
- (2)
- The no-flux boundary is the grey boundary shown in Figure 1, the tetracycline hydrochloride was prevented diffuse from this boundary.
- (3)
- The drug diffusion boundary is the blue boundary shown in Figure 1, the tetracycline hydrochloride diffuses into the external environment through this boundary during drug delivery. For the reason that the external environment simulates the state of body fluid circulation, if any drug diffuses through this boundary, it is removed by the circulation of body fluids. So that the concentration of this drug diffusion boundary was always 0 mol/m3.
- (4)
- According to the method in Section 2.2, the diffusion coefficient of tetracycline hydrochloride in polyacrylamide-sodium alginate hydrogel was 1.8 × 10−11 m2/s, and diffusion coefficient of tetracycline hydrochloride in water was 7.42 × 10−10 m2/s.
2.4. Key Methods and Parameters for Solving the Optimisation Model
3. Results and Discussion
3.1. Effect of Mesh Size on Optimisation Results
3.2. Effect of Target Concentration on Optimisation Results
3.3. Effect of Volume Factor on Optimisation Results
3.4. Hydrogel CDDS In Vitro Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taliun, D.; Harris, D.N.; Kessler, M.D.; Carlson, J.; Szpiech, Z.A.; Torres, R.; Taliun, S.A.G.; Corvelo, A.; Gogarten, M.S.; Kang, M.H.; et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 2021, 590, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Huang, Y.; Zheng, J. Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. J. Control. Release. 2020, 322, 64–80. [Google Scholar] [CrossRef]
- Sahafnejad-Mohammadi, I.; Karamimoghadam, M.; Zolfagharian, A.; Akrami, M.; Bodaghi, M. 4D printing technology in medical engineering: A narrative review. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 233. [Google Scholar] [CrossRef]
- Gefen, A. How medical engineering has changed our understanding of chronic wounds and future prospects. Med. Eng. Phys. 2019, 72, 13–18. [Google Scholar] [CrossRef]
- Li, X.; Ouyang, J.; Yang, H.; Chang, S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl. Clay Sci. 2016, 126, 306–312. [Google Scholar] [CrossRef]
- Timin, A.S.; Gould, D.J.; Sukhorukov, G.B. Multi-layer microcapsules: Fresh insights and new applications. Expert Opin. Drug Deliv. 2017, 14, 583–587. [Google Scholar] [CrossRef] [Green Version]
- El-Toni, A.M.; Habila, M.A.; Labis, J.P.; ALOthman, Z.A.; Alhoshan, M.; Elzatahry, A.A.; Zhang, F. Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures. Nanoscale 2016, 8, 2510–2531. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Chen, L.; Huo, Y.; Xu, C.; Li, S.; Yang, L. Fabrication and in-vitro experimental study on an implantable controlled drug delivery system with micro-hole for zero-order release. Mater. Res. Express 2020, 7, 085407. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Q.; Qin, T.; Xu, X.; Sun, H.; Liu, M.; Zhu, H. Fabricationof cRGD-modified reduction-sensitive nanocapsule via Pickering emulsion route to facilitate tumor-targeted delivery. Int. J. Nanomed. 2019, 14, 3361–3373. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Liu, R.; Zhou, Y.; Gao, H. Size-tunable strategies for a tumor targeted drug delivery system. ACS Cent. Sci. 2020, 6, 100–116. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Tan, H. Alginate-based biomaterials for regenerative medicine applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef] [PubMed]
- Manikkath, J.; Subramony, J.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug Deliv. Rev. 2021, 179, 113997. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Marra, K.G. Injectable, biodegradable hydrogels for tissue engineering applications. Materials 2010, 3, 1746–1767. [Google Scholar] [CrossRef]
- Ito, T.; Yamaguchi, S.; Soga, D.; Ueda, K.; Yoshimoto, T.; Koyama, Y. Water-Absorbing bioadhesive poly (acrylic acid)/polyvinylpyrrolidone complex sponge for hemostatic agents. Bioengineering 2022, 9, 755. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.R.; Archang, M.M.; Kuan, C.H.; Weaver, W.M.; Weinstein, J.S.; Feng, A.C.; Scumpia, P.O. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 2021, 20, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Lee, S.M.; Kim, C.B.; Lee, K.H. 5-Fluorouracil-immobilized hyaluronic acid hydrogel arrays on an electrospun bilayer membrane as a drug patch. Bioengineering 2022, 9, 742. [Google Scholar] [CrossRef]
- Li, S.; Dong, S.; Xu, W.; Tu, S.; Yan, L.; Zhao, C.; Chen, X. Antibacterial hydrogels. Adv. Sci. 2018, 5, 1700527. [Google Scholar] [CrossRef] [Green Version]
- Mohd Isa, I.L.; Abbah, S.A.; Kilcoyne, M.; Sakai, D.; Dockery, P.; Finn, D.P.; Pandit, A. Implantation of hyaluronic acid hydrogel prevents the pain phenotype in a rat model of intervertebral disc injury. Sci. Adv. 2018, 4, 0597. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Ji, Y.; Sun, Q.; Fu, Y.; Xu, Y.; Jin, L. Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials 2019, 9, 253. [Google Scholar] [CrossRef]
- Yan, J.; Chen, R.; Zhang, H.; Bryers, J.D. Injectable biodegradable chitosan-alginate 3D porous gel scaffold for mRNA vaccine delivery. Macromol. Biosci. 2019, 19, 1800242. [Google Scholar] [CrossRef]
- Lou, C.; Tian, X.; Deng, H.; Wang, Y.; Jiang, X. Dialdehyde-β-cyclodextrin-crosslinked carboxymethyl chitosan hydrogel for drug release. Carbohydr. Polym. 2020, 231, 115678. [Google Scholar] [CrossRef] [PubMed]
- Rezanejade Bardajee, G.; Asgari, S.; Mirshokraie, S.A. Submicron particles of double network alginate/polyacrylamide hydrogels for drug delivery of 5-Fluorouracil. Iran. J. Chem. Chem. Eng. 2021, 40, 1386–1394. [Google Scholar]
- Parsa, P.; Paydayesh, A.; Davachi, S.M. Investigating the effect of tetracycline addition on nanocomposite hydrogels based on polyvinyl alcohol and chitosan nanoparticles for specific medical applications. Int. J. Biol. Macromol. 2019, 121, 1061–1069. [Google Scholar] [CrossRef]
- Mufamadi, M.S.; Kumar, P.; du Toit, L.C.; Choonara, Y.E.; Obulapuram, P.K.; Modi, G.; Pillay, V. Liposome-embedded, polymeric scaffold for extended delivery of galantamine. J. Drug Deliv. Sci. Technol. 2019, 50, 255–265. [Google Scholar] [CrossRef]
- Carafa, M.; Marianecci, C.; Di Marzio, L.; Rinaldi, F.; Di Meo, C.; Matricardi, P.; Coviello, T. A new vesicle-loaded hydrogel system suitable for topical applications: Preparation and characterization. J. Pharm. Pharm. Sci. 2011, 14, 336–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Lin, Z.; Zhang, Q.; Zhang, Y.; Liu, Y.; Lyu, Y.; Li, X.; Zhou, C.; Wu, G.; Ao, N.; et al. Injectable and in situformable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl. Mater. Interfaces 2020, 12, 17936–17948. [Google Scholar] [CrossRef]
- Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Wang, D.; Liang, W.; Liu, L.; Zhang, Y.; Chen, X.; Cao, Y. Novel concept of the smart NIR-light–controlled drug release of black phosphorus nanostructure for cancer therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Morales, R.T.T.; Cui, X.; Huang, J.; Qian, W.; Tong, J.; Chen, W. A photoresponsive hyaluronan hydrogel nanocomposite for dynamic macrophage immunomodulation. Adv. Healthc. Mater. 2019, 8, 1801234. [Google Scholar] [CrossRef]
- Chen, J.K.; Chang, C.J. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review. Materials 2014, 7, 805–875. [Google Scholar] [CrossRef]
- Qu, J.; Liang, Y.; Shi, M.; Guo, B.; Gao, Y.; Yin, Z. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release. Int. J. Biol. Macromol. 2019, 140, 255–264. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, I.M.; Smyth, H.D. Smart magnetically responsive hydrogel nanoparticles prepared by a novel aerosol-assisted method for biomedical and drug delivery applications. J. Nanomater. 2011, 2011, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munk, D.J.; Auld, D.J.; Steven, G.P.; Vio, G.A. On the benefits of applying topology optimization to structural design of aircraft components. Struct. Multidiscip. Optim. 2019, 60, 1245–1266. [Google Scholar] [CrossRef]
- Makhija, D.S.; Beran, P.S. Concurrent shape and topology optimization for unsteady conjugate heat transfer. Struct. Multidiscip. Optim. 2020, 62, 1275–1297. [Google Scholar] [CrossRef]
- Lizarribar, B.; Prieto, B.; Martinez-Iturralde, M.; Artetxe, G. Novel topology optimization method for weight reduction in electrical machines. IEEE Access 2022, 10, 67521–67531. [Google Scholar] [CrossRef]
- Chen, G.; Pettet, G.J.; Pearcy, M.; McElwain, D.L.S. Modelling external bone adaptation using evolutionary structural optimisation. Biomech. Model. Mechanobiol. 2007, 6, 275–285. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Tian, X.; He, Y. Study on the performance of variable density multilayer insulation in liquid hydrogen temperature region. Energies 2022, 15, 9267. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, H.; Zhang, T.; Hua, Q.; Yuan, L.; Wang, W. An efficient strategy for non-probabilistic reliability-based multi-material topology optimization with evidence theory. Acta Mech. Solida Sin. 2019, 32, 803–821. [Google Scholar] [CrossRef]
- Li, D.; Liao, Y.; Chen, X.; Wang, H.; Wen, Y.; Cheng, K.; Lin, Q. Preparation and properties of homogeneous oxidized sodium alginate/silica/polyacrylamide–gelatin composite hydrogel based on interpenetrating network technology. Polym. Bull. 2022, 1–19. [Google Scholar] [CrossRef]
- Ghazalian, M.; Afshar, S.; Rostami, A.; Rashedi, S.; Bahrami, S.H. Fabrication and characterization of chitosan-polycaprolactone core-shell nanofibers containing tetracycline hydrochloride. Colloids Surf. A 2022, 636, 128163. [Google Scholar] [CrossRef]
- Peppas, N.A.; Wright, S.L. Drug diffusion and binding in ionizable interpenetrating networks from poly (vinyl alcohol) and poly (acrylic acid). Eur. J. Pharm. Biopharm. 1998, 46, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wu, X.Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 2004, 25, 5281–5291. [Google Scholar] [CrossRef]
- Grassi, M.; Colombo, I.; Lapasin, R. Experimental determination of the theophylline diffusion coefficient in swollen sodium-alginate membranes. J. Control. Release 2001, 76, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Lu, H.; Li, Y.; Yang, L.; Gao, Y. Direct ink writing of materials for electronics-related applications: A mini review. Front. Mater. 2021, 8, 647229. [Google Scholar] [CrossRef]
- Azuma, C.; Yasuda, K.; Tanabe, Y.; Taniguro, H.; Kanaya, F.; Nakayama, A.; Osada, Y. Biodegradation of high-toughness double network hydrogels as potential materials for artificial cartilage. J. Biomed. Mater. Res. Part A 2007, 81, 373–380. [Google Scholar] [CrossRef]
- Xiao, Z.; Ollivier-Gooch, C. Smooth gradation of anisotropic meshes using log–euclidean metrics. AIAA J. 2021, 59, 4105–4122. [Google Scholar] [CrossRef]
- Zhou, M.; Alexandersen, J.; Sigmund, O.W.; Pedersen, C.B. Industrial application of topology optimization for combined conductive and convective heat transfer problems. Struct. Multidiscip. Optim. 2016, 54, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Hasanpouri, A.; Lotfipour, F.; Ghanbarzadeh, S.; Hamishehkar, H. Improvement of dermal delivery of tetracycline using vesicular nanostructures. Res. Pharm. Sci. 2018, 13, 385. [Google Scholar] [PubMed]
- Zhang, W.; Ren, G.; Xu, H.; Zhang, J.; Liu, H.; Mu, S.; Cai, X.; Wu, T. Genipin cross-linked chitosan hydrogel for the controlled release of tetracycline with controlled release property, lower cytotoxicity, and long-term bioactivity. J. Polym. Res. 2016, 23, 156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, T.; Meng, F.; Hou, Z.; Xu, C.; Yang, L. Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System. Materials 2023, 16, 2687. https://doi.org/10.3390/ma16072687
Gao Y, Li T, Meng F, Hou Z, Xu C, Yang L. Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System. Materials. 2023; 16(7):2687. https://doi.org/10.3390/ma16072687
Chicago/Turabian StyleGao, Yang, Tan Li, Fanshu Meng, Zhenzhong Hou, Chao Xu, and Laixia Yang. 2023. "Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System" Materials 16, no. 7: 2687. https://doi.org/10.3390/ma16072687
APA StyleGao, Y., Li, T., Meng, F., Hou, Z., Xu, C., & Yang, L. (2023). Topological Optimisation Structure Design for Personalisation of Hydrogel Controlled Drug Delivery System. Materials, 16(7), 2687. https://doi.org/10.3390/ma16072687